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I. Introduction 
 
We have constructed simple toy models to determine how experimental errors 
propagate into the precision that SNAP can achieve in its measurement of the 
cosmological parameters.  Specifically, we investigate the impact of errors on the 
proposed SNAP mission objectives – measurement of ∆ΩM/ΩM to ≤ 2% and the 
measurement of ∆ΩΛ/ΩΛ to ≤ 5%.  In this report, we consider three types of error: 
Gaussian distributed redshift errors, Gaussian distributed systematic errors, and non-
Gaussian distributed systematic errors.   
 
Gaussian distributed redshift errors are mostly the result of using photometry and low-
resolution spectroscopy for the supernova redshift determination, rather than time-
consuming, high-resolution spectroscopy.  Gaussian distributed systematic errors and 
non-Gaussian distributed systematic errors are discussed in the document 
“Cosmological Parameters as a Function of z” also found in this Yellow Book.  As 
described there, Gaussian distributed systematic errors introduce  `an irreducible 
systematic error that is independent of other redshift bins’.   The K-correction is an 
example of this type of systematic.  Non-Gaussian distributed systematic errors, on the 
other hand, are those which are `correlated systematic magnitude shifts’ that model 
errors introduced by supernova evolution, Malmquist bias, and gray dust.    

II. Toy Models 

A. Initial Cosmological Models  
We analyzed the effect of errors on the cosmological models listed in Table 1.   
 

Table 1.  Input Cosmological Models 
Model ΩM0 ΩΛ0 w0  

1 0.28 0.72 -0.7 flat 
2 0.40 0.10 -0.7 mass dominated 
3 0.28 0.30 -0.7 ΩM ≈ ΩΛ 
4 0.28 0.50 -0.7 Λ dominated 



 
In model 1 we assumed a flat universe prior so that the errors on the cosmological 
parameters are smaller.  The curvature is unconstrained on the other models.   

B. Procedure 
All our computations were based on Alex Kim’s program SYSTEMATIC.PRO.  
However, the χ2 minimization method was replaced by MINUIT, the well-known CERN 
minimization routine.  In addition, the entire suite of routines was ported to the ROOT 
C++ framework to take advantage of the CERN histogramming, plotting, and analysis 
packages.  We also used the routines in Numerical Recipes when required. 
 
We investigated each error type individually.  We then compared the results of 
superposing all the error types with our theoretical expectation. 

1.  Gaussian Redshift Errors 
We first investigated how errors in redshift propagate into cosmological parameter 
errors in the absence of photometric measurement errors.  The supernova distribution 
we used in this study was taken from Table 7.2 in the SNAP proposal.  In particular, we 
chose 2,366 supernova redshifts zi, by a Monte Carlo method that preserves the number 
of supernova in each redshift bin of the table (width ∆z = 0.1) and which assumes a 
linear increase in the number of supernova in each bin.  Current instrumental designs 
for SNAP are now being considered that will follow even more supernovae.   
 
For each input cosmology, we first computed the distance moduli, 

),,,()( 000 wzMm Miii ΛΩΩ=− µ , for the supernovae, where “0“ indicates the initial 
model parameters.  We then chose a normally distributed redshift error, δzi, for each 
supernova using a constant standard deviation σz in the range σz = 0.001-0.01, and used 
MINUIT to minimize the statistic 
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for the best-fitting cosmological parameters ΛΩΩ ,M , w, and 0
BM∆ .  In this expression, 

00
BBB MMM −=∆  measures the best-fit SNIa absolute magnitude compared with the 

input absolute magnitude.  For each supernova, the phenomenological stretch correction 
is given by the relation ∆m = α(s-1).  Since ∆m must be corrected for time dilation, the 
error in the stretch correction is written )1/(0 zzss +×=∆ δα .  In this computation, we 
used α = -1.74 and s0 = 1.  The factor σi represents the photometric error and is constant 
since all supernovae will have the same quality observations. In our computations, 
MINUIT minimizes χ2 with respect to four fit parameters, ΩM, ΩΛ, w, and 0

BM∆ , and we 
allowed these parameters to vary over the ranges shown in Table 2. 
 
 
 



 
Table 2.  Allowed Ranges for Fit Parameters in MINUIT 

55.01.0 ≤Ω≤ M  0.10.1 ≤Ω≤− Λ  00.1 ≤≤− w  1.01.0 0 ≤≤− BMδ  
 

We repeated this process for 200 trials for each input cosmology and made histograms of 

the quantities 0
MMM Ω−〉Ω〈=∆Ω , 0

ΛΛΛ Ω−〉Ω〈=∆Ω , 0www −〉〈=∆ , and 0
BM∆ .  We 

then increased the input standard deviation, σz, and repeated the computations.  
Examples of these histograms for the four input cosmologies and 003.0=zσ  are shown 
in Figures 1a, 1b, 1c, and 1d.   

 
Figure 1a 

 
Figure 1b 

 
Figure 1c 

 
Figure 1d 



2. Gaussian Systematic Errors 
For these computations we used one supernova in each of 170 redshift bins of width ∆z 
= 0.01, and we assumed that the redshifts of these supernovae were at the bin midpoint.  
For each initial cosmological model, we first chose the standard deviation for the 
photometric errors in each redshift bin, σm(z), according to the relation 
 

,7.1/)( max zmzm ×∆=σ  
 

where ∆mmax  is in the range 0.005-0.035 magnitudes,  and then determined a normally 
distributed error in the measured magnitude, ∆mi, for each supernova in the study.  We 

used MINUIT to find the best-fitting cosmological parameters ΛΩΩ ,M , w, and 0
BM∆  by 

minimizing the statistic 
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We varied the parameters over the same ranges as in the case of statistical errors.  We 
repeated this process for 500 trials for each choice of cosmological model and mean 
magnitude error, and computed the relevant histograms.   We repeated this process for 
500 trials for each input cosmology and made histograms of the 

quantities 0
MMM Ω−〉Ω〈=∆Ω , 0

ΛΛΛ Ω−〉Ω〈=∆Ω , 0www −〉〈=∆ , and 0
BM∆ .  We 

then increased the standard deviation, σm(zmax), and repeated the computations.   
 

3. Non-Gaussian Systematic Errors 
For these computations we used one supernova in each of 170 redshift bins of width ∆z 
= 0.01.  We assumed that the redshifts of the supernovae were at the bin midpoint.   
 
For each initial cosmological model, we chose a systematic photometric offset in each 
redshift bin according to the relation 
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where maxm∆ is in the range 0.005-0.035 magnitudes.  In this case, the offset was applied 
directly to the measured magnitude for a single supernova at the center of each redshift 

bin.  We used MINUIT to find the best-fitting cosmological parameters ΛΩΩ ,M , w, and 
0
BM∆ .  We varied the fit parameters over the same ranges as in the previous cases and 

minimized the same χ2 as in the case of Gaussian systematic errors.   Since the errors are 
always the same, there is no need to repeat the process.  



III. Results 

A. Gaussian Redshift Errors 
 
Figures 2a, 2b, 2c, and 2d show the rms of the distributions for 200 trials as a function of 
the mean redshift error for the four input cosmologies.  In Figures 3a, 3b, 3c, and 3d, we 
show the deviation from the mean as a function of the mean redshift error for the four 
models.  The error bars in Figures 3 represent the errors in the mean.  On Figures 2a-d, 
straight line fits to the rms as a function of mean redshift errors is superposed for range 
in which the fits are appropriate.  On these figures the fit parameters are also shown.  In 
the construction of these figures, significant outliers were excluded. 
 
For the flat case 1, shown in Figures 2a and 3a, the rms increases linearly until 

≈zσ 0.008, and then flattens out.  In this case, deviations from the mean are <1% and 
insignificant.  For the matter dominated case 2, shown in Figures 2b and 3b, the rms 
increases linearly for ∆ΩM and ∆w for all values of σz.  On the other hand, for ∆ΩΛ and 

0
BM∆ , the rms increases linearly until ≈zσ 0.008, and then begins to deviate quite 

considerably from the linear increase for larger errors.  As can be seen from Figure 3b, 
∆ΩΛ and ∆w deviate considerably from their initial values for larger errors.  What 
appears to be happening in the mass dominated cosmologies with large redshift errors, 
the solutions for ΩΛ that MINUIT finds are not well constrained.  Basically MINUIT 
finds solutions that tend toward ΩΛ ≈ 0 when the redshift errors are large.  In addition, 
since ΩΛ is small, w will not be well determined and MINUIT continually runs up 
against its w = -1.  As shown in Figures 2c and 3c, this behavior is still in evidence for the 
ΩM ≈ ΩΛ but it is not quite so strong.  For the ΩΛ dominant case, shown in Figures 2d and 
3d, the behavior is somewhat different.  In this case, MINUIT finds solutions tending 
toward larger values of ΩΛ as redshift errors become large.  However, since ΩΛ is 
dominant, ∆w is not as large as in the previous cases. 
 
 
 



 
 
 
 
 
 

 
Figure 2a 

 
Figure 2b 

 
Figure 2c 

 
Figure 2d 



 
 
 
 
 

 
Figure 3a 

 
Figure 3b 

 
Figure 3c 

 
Figure 3d 



B. Gaussian Systematic Errors 
 
Figures 4a, 4b, 4c, and 4d show the r.m.s. of the distributions for 500 trials as a function 
of the magnitude of ∆mmax for the four input cosmologies.  The rms of the parameter 
distributions clearly increase linearly over the range of ∆mmax studied.  Except in one 
instance, the deviations from the mean of the cosmological parameters are < 0.01 for this 

error type; that is, within computational errors, 
0
MM Ω−〉Ω〈  ≈ 0, 

0
ΛΛ Ω−〉Ω〈 ≈ 0, 

0ww −〉〈  ≈ 0, and 〉∆〈 0
BM ≈ 0.    For model 2, 

0ww −〉〈  ≈ 0.05 for ∆mmax  = 0.035. 
 

 
Figure 4a 

 
Figure 4b 

 
Figure 4c 

 
Figure 4d 



C. Non-Gaussian Systematic Errors 
Figures 5a, 5b, 5c, and 5d show the deviation from the mean of the cosmological 

parameters as a function of the magnitude of maxm∆ for the four input cosmologies.  The 
deviations in 0

BM∆  are small and insignificant for all input cosmologies.  For the flat 

case model 1, the deviations 
0
MM Ω−〉Ω〈  increase with ∆max; in addition, the behavior is 

highly variable for the largest values of ∆mmax.  For the remaining input cosmologies, 
0
MM Ω−〉Ω〈  decreases with increasing ∆mmax.  Similar behavior is also seen for 

0ww −〉〈 , 

except that 00 ≈−〉〈 ww  for small values of ∆mmax.   The deviations 
0
ΛΛ Ω−〉Ω〈  decrease 

for all input cosmologies.  In model 4 it appears as if MINUIT is making a transition to a 
different minimum in parameter space as ∆mmax increases. 
 
 
 

 
 

 
Figure 5a 

 
Figure 5b 



 

D. Models with Multiple Error Types 
 
Using the results above we can compute the combined effect of multiple error types on 
the cosmological parameters.  We first determine the rms for the combined model by 
adding the rms of the Gaussian statistical errors and the Gaussian systematic errors in 
quadrature.   We then compute the deviation from the mean for the cosmological 
parameters by simply adding the deviation from the mean for the non-Gaussian 
systematic errors. 
 
We tested this hypothesis by running 200 trials each for a combined error case.  For these 
computations we chose redshift errors as in the Gaussian statistical error case for the 
2,366 SNIa.  We chose a Gaussian systematic error using  
 

,7.1/)( max zmzm ×∆=σ  
 
and a non-Gaussian systematic error in the supernova magnitude using 
 

.7.1/)( max zmzm ×∆=〉∆〈  
 
We then used MINUIT to find the best-fitting cosmological parameters by minimizing 
the statistic 

 

 
Figure 5c 

 
Figure 5d 
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We show the results of the computations in Figures 6.   We summarize the results in 
Table 3 below.  For this case the predictions match the computations quite well.   
 

 
 
 
 
 
 
 

 
 

 

 
Figure 6 

 
 
 

Table 3.  Combined Error Model 

Model 3 

Gaussian Statistical .003 

Gaussian Systematic .01 

Non-Gaussian Statistical .015 

compMpredM )()( Ω−Ω σσ  ≈ 0 

compMMpredMM ][][ 00 Ω−〉Ω〈−Ω−〉Ω〈  .001 

comppred )()( ΛΛ Ω−Ω σσ  .006 

comppred ][][ 00
ΛΛΛΛ Ω−〉Ω〈−Ω−〉Ω〈  .001 

comppred ww )()( σσ −  .002 

comppred wwww ][][ 00 −〉〈−−〉〈  .01 

compBpredB MM )()( 00 δσδσ −  ≈ 0 

compBpredB MM 〉〈−〉〈 00 δδ  ≈ 0 

 
 
 


