

The Hunting of the Dark Energy and On Beyond Lambda

Eric Linder Cosmology Teach-In 26 June 2003

Cosmic Concordance

rrrrr

Dark energy ~70%

Lord Kelvin (1900): Two clouds on the horizon

STScI

The horizon is 95% cloudy!

Expansion History of the Universe

Perlmutter, Physics Today, April 2003

Expansion History of the Universe

Perlmutter, Physics Today, April 2003

Expansion map d(z)

Supernova Cosmology 1

63

Supernova Cosmology 2

Einstein gravitation says gravitating mass depends on energy-momentum tensor: both energy density **r** and pressure **p**, as **r**+3p

Negative pressure can give negative "mass"

Newton's 2nd law: Acceleration = Force / mass $\ddot{R} = - G (4p/3) (r+3p) R$

Negative pressure can accelerate the expansion

Relation between **r** and **p** (equation of state) is crucial:

Acceleration possible for p < -(1/3)r or w < -1/3

What does negative pressure mean?

Consider 1st law of thermodynamics:

dU = -p dV

But for a springdU = +k x dxor a rubber banddU = +T dI

Acceleration of the universe can be caused within general relativity by negative pressure.

This can be from a dark energy, arising from the "springiness" of space, i.e. from the quantum vacuum. *cf.* Einstein, deSitter, Weyl 1910s-1920s.

Is this mysterious dark energy the original cosmological constant, a quantum zeropoint sea?

He had bought a large map representing the sea Without the least vestige of land, And the crew were much pleased when they found it to be A map they could all understand.

-- Lewis Carroll, *The Hunting of the Snark*

Two flaws:

• The sea level should be 10¹²⁰ times the height of the land – it really should be a featureless sea!

• The area of sea vs. land should evolve rapidly – why do we see it as 70:30 not all one or the other?

The energy scale of the vacuum needed to fit observations of the dark energy density (the sea level) is meV not $M_{pl} \sim 10^{19}$ GeV

To try to correct the coincidence problem (neither all land nor all sea today), the effective mass of a varying quantum field must have a Compton wavelength ~ size of universe

m ~ H₀ ~ 1/(10²⁸ cm) ~ 10⁻³³ eV

 $[L_{pl}= 10^{-33} cm] / 10^{28} cm = m / [10^{19} GeV]$

L Fails

Other maps are such shapes, with their islands and capes, But we've got our brave [captain] to thank (So the crew would protest) that he's bought us the best – A perfect and absolute blank.

-- Lewis Carroll, The Hunting of the Snark

The universe is not simple:

So maybe neither is the quantum vacuum (or gravitation?)

So... On Beyond L!

On beyond L! It's high time you were shown That you really don't know all there is to be known. -- à la Dr. Seuss, On Beyond Zebra

How do we find dark energy models inspired by fundamental physics?

How do we find the nature of dark energy through observations?

This is not new!

- High energy physics models Linde 1986
- Cosmological probes Wagoner 1986 (plots by EL)
- Cosmological observations Loh & Spillar 1986

But observations were imprecise and inaccurate. Galaxy counts showed $W_M \approx 1$ but major difficulties with evolution.

12 years passed...

Dark Energy – The Discovery

L > 0 at 99% confidence

Supernova/Acceleration Probe: SNAP

Discovery +12 years

Fundamental Physics

The subtle slowing and growth of scales with time -a(t) - map out the cosmic history like the tree rings map out the Earth's climate history.

Map the expansion history of the universe

Dark Energy at z > 1

Time variation w' is a critical clue to fundamental physics.

- Deep surveys of galaxies and SN to z>1
- Large scale structure formation
- CMB constraints from *z*_{/ss}=1100

Robust parametrization: $w(a)=w_0+w_a(1-a)$ Community recognition: CMB*fast*, CMB*easy*

Alterations to Friedmann framework ® w(z)

Friedmann equation:

 $H^2 = (8p/3) r_m + dH^2(z)$

Effective equation of state:

 $w(z) = -1 + (1/3) d \ln(dH^2)/d \ln(1+z)$

Supernovae Probe Dark Energy

SNAP tightly constrains dark energy models.

Complementarity

SNAP tightly constrains dark energy models... And plays well with others.

SNAP+Planck have excellent complementarity, equal to a prior $s(W_M)$ £0.01.

Frieman, Huterer, Linder, & Turner 2002

SNAP+Planck can detect time variation w´ at 99% cl (e.g. SUGRA).

Fundamental Physics 2

SNAP tightly constrains dark energy models... And plays well with others. Lots of others.

- Probing the nature of dark energy
- Structure of the vacuum
- w (z) ® V / V(f)
- High energy physics
- Synergy and complementary methods

SNAP Complements SNAP

Wide, Deep and Colorful

- 9000 times the area of Hubble Deep Field
- 15 sq.deg. to AB mag R=30 ; 120 epochs
- 300 sq.deg. to AB mag R=28

Dark energy is...

- Dark
- Smooth on cluster scales
- Accelerating

Maybe not completely! Clumpy in horizon? Maybe not forever!

It's not quite so simple!

You'll be sort of surprised what there is to be found Once you go beyond L and start poking around.

-- à la Dr. Seuss, On Beyond Zebra

Motivation:

Because it's there?! More natural than cosm-illogical constant? Kolb

Particle physics has zebrons, zebrillas, zebrinos...

Inflation has its hybrids, supernaturals, etc.

Quintessence has its mutations in attempt to make physics more natural.

Simplicity vs. naturalness – epicycles

Heart of Darkness

Is dark energy dark – only interacts gravitationally?

Self interaction:

Scalar fields have radiative corrections leading instability to self clumping: Qballs

Þ pseudoscalar quintessence Axion quintessence, PNGB

Coupling to matter: Leads to 5th force: limited by lab tests Unify dark energy with dark matter? Chaplygin gas Distorts matter power spectrum: ruled out unless within 10⁻⁵ of L **Heart of Darkness 2**

Can clump on subhorizon scales Can "turn on" from nonlinear structure formation?!

Higher dimension gravity ▶ Scalaron quintessence Can be written in terms of scalar-tensor and w_{eff}

Same game as early universe inflation – just want to occur at late times, low curvature, potential, etc.

For flat, Robertson-Walker metric $R = 6 (\ddot{a}/a + \dot{a}^2/a^2) = 6H^2 (1 - q)$ So acceleration related to Ricci scalar $W_{tot} = -(1/3) (R/3H^2 - 1)$ (also follows from R = -8pGT).

So acceleration for $R > 3H^2$. But can't get w_{eff} by dRlike before with dH, since changes field equations. $S = \partial d^4 x \ \ddot{O} - g [R + L_M]$

Can get acceleration by

- 1. Change RHS T^m, e.g. dark energy
- 2. Add terms in R, e.g. modify gravity
- 3. Couplings or imperfect fluid L_M

w < -1:

Phantom energy – why not allow it?

Requires non-canonical kinetic energy, e.g. negative or nonlinear function. k-essence, strings, branes

Ties to quantum gravity e.g. vacuum metamorphosis

Fate of universe is not deSitter but superacceleration (if *w* stays < -1)

History and Fate

Collapsing Universe

Work in collaboration with Renata Kallosh, Jan Kratochvil, Andrei Linde, Marina Shmakova

To map out use of observations to probe fate of the universe, start with simplest model:

1 parameter linear potential

 $V(f) = V_0 + a M_{Pl}^3 f$

Eventually V(f) < 0 and universe collapses.

Inspired by supergravity models, fairly generic fit for any collapsing model.

How long until cosmic doomsday?

Linear Potential

These dark energy models look like L in the past, but develop a strong w'.

Cosmic Doomsday

w is the 1st step for fundamental physics beyond **L**.

Then *w(z)*. Eventually spatial variations *C*^{*Q*}?

In our hunt for the dark energy, the data decides how to go on beyond **L**.

SNAP[SN] + SNAP[WL] + CMB (+...) tells us if

In the places I go there are things that I see That I never could spell if I stopped with the Z

-- Dr. Seuss, On Beyond Zebra