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and should improve further when adding high resolution
(high multipole l) measurements. The second bin has
equivalent constraints when taking into account its nar-
rowness. Around recombination, however, �3 and �4 have
looser bounds because all the standard cosmological pa-
rameters also enter strongly at this epoch, and so the
increased covariance dilutes their estimation. They have
the two highest correlation coe�cients, of 0.89 between
�3 and ⌦ch

2 and �0.76 between �4 and ⌦bh
2. Finally,

the late, broad bin of �5 has strong constraints. These
behaviors are all consistent with the pre-Planck, Fisher
matrix predictions of [3] (see their Fig. 4). Adding late
time data or priors (which we avoid; see concluding sec-
tion) can shrink some uncertainties by up to 60%.

The expansion history does not completely define the
system of Boltzmann equations: the e↵ective dark com-
ponent can have internal degrees of freedom such as
sound speed cs that determine the behavior of its per-
turbations and hence the gravitational clustering of the
photons [10]. Therefore we also show in Table I the con-
straints when this sound speed is equal to that of a rel-
ativistic species (c2s = 1/3), or is much smaller than the
speed of light, cold dark energy with cs = 0. The cs = 0
case has looser bounds, due to the additional influence on
the photon clustering with the strengthened gravitational
potentials, and covariance with matter parameters dur-
ing matter domination. For the c2s = 1/3 case, where the
extra expansion rate corresponds to extra relativistic de-
grees of freedom, the constraints are weaker during radi-
ation domination. This is a combination of the expansion
deviation acting just like the photons, and a slight prefer-
ence of the data for additional radiation energy density,
in accord with previous hints that the number of e↵ec-
tive neutrino species, Ne↵ , might be greater than the
standard model value of 3.046. Indeed, the mean value
of �2 = 0.026 in this case corresponds to �Ne↵ = 0.31,
in good agreement with the Planck values of Ne↵ = 3.39.
In all other parts of the article we keep cs = 1.

Case �1(10
�4.5) �2(10

�3.8) �3(10
�3.4) �4(10

�3.0) �5(10
�1.4)

c2s = 1 0.036 0.050 0.160 0.095 0.018
c2s = 1/3 0.053 0.054 0.067 0.038 0.013
c2s = 0 0.060 0.069 0.109 0.184 0.223

TABLE I. 95% confidence upper bounds are given for the ex-
pansion history deviations �, listed by the bin number and
midpoint of the log a bins, for cases with di↵erent sound
speeds.

Figure 3 shows the mean value and 68% uncertainty
band of the expansion deviations �(a) given by the Monte
Carlo reconstruction using the recent CMB data. This
figure represents the best current model-independent
knowledge of the early expansion history of our Universe.
Setting all �i = 0, i.e. ⇤CDM, is consistent with these re-
sults at the 95% confidence level. The mean value does
show a very slight preference for a faster expansion rate,
as in early dark energy or extra relativistic degrees of
freedom, before recombination.

FIG. 3. Reconstruction of the expansion history deviations
�(a) from ⇤CDM is shown, with the mean value (solid line)
and 68% uncertainty band (shaded area).

IV. PHYSICAL IMPLICATIONS

This analysis has been model independent, allowing in-
dividual epochs to float freely without assuming a func-
tional form. If we do assume a specific model, then con-
straints will in general be tighter, with each epoch having
leverage on others through the restricted form.
Three distinct families of early dark energy might be

considered: where the early dark energy density rises,
falls, or stays constant across CMB recombination. These
were investigated in [3] in terms of the (somewhat moti-
vated) models of barotropic aether, dark radiation, and
Doran-Robbers [11] forms, respectively (see [3] for more
detailed discussion). We compute the constraints on the
fraction ⌦e of critical density contributed by early dark
energy (approximately equivalent to �) within each of
these models (not using the �i bins), giving the results in
Table II. (Note that Planck finds ⌦e < 0.009 at 95% CL
for the Doran-Robbers model when also including high
multipole data [12].)

Aether Dark Radiation Doran-Robbers
⌦e 0.019 0.033 0.012

TABLE II. The 95% confidence level uncertainties are pre-
sented for three early dark energy models. For small values,
⌦e ⇡ �. The Doran-Robbers model has an additional param-
eter w0; we find w0 = �1.49+0.69

�0.57 (95% CL).

Two aspects of the models impact their detectability:
the presence of the expansion history deviation at a sen-
sitive epoch and its persistence over time, and its clus-
tering behavior. The common Doran-Robbers form has
the tightest bounds (despite the extra parameter), due to
its persistence pre- and post-recombination and its dis-
tinction from matter clustering since it has c2s = 1. The
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What is the Standard Cosmological Model? 

This very much depends where people draw the line 
in “cosmology” or ‘universe”.  

Cosmology as the global properties of the universe: 

•  Smoothly connected – we can get from here to 
there, and then to now. Not discrete.  

•  Metric – we can figure out how far it is from here 
to there and then to now.  

•  Homogenous and isotropic – Robertson-Walker 
metric: familiar territory! 

•  Evolving – expansion factor a(t). 

•  Spatial curvature – optional. 



3 3 

Cosmology as History 

Cosmology as the history of the universe: 

•  Early hot dense state – “Big Bang”. Whether we 
start at the Planck energy, 1015 GeV, or 103 GeV is 
a detail.  

•  Matter/antimatter asymmetry – ???  

•  Radiation era – primordial nucleosynthesis, 
degrees of freedom g★ (neutrino decoupling, 
electron/positron annihilation), CMB 
thermalization.  

•  Matter era – growth of structure (us!).  

•  Cosmic acceleration – “dark energy”. 
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Cosmology as Contents 

Cosmology as the stuff in the universe: 

•  Cosmic microwave background – CMB structure 
(anisotropies, polarization, spectral distortions) is 
a rich probe of both history (including initial 
conditions, e.g. adiabatic) and the other contents.  

•  Large scale structure – density field, velocity 
field, acceleration (gravity) field.  

Cosmology as the stuff in the stuff in the universe? 

•  Galaxies, clusters, assorted particles/fields 
(neutrinos, gravitational waves). 

Properties of the stuff in the stuff?  

•  Cuspy cores, tidal streams, Cepheid pulsations, ... 
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Cosmologing is Hard 
But... the properties of the stuff in the stuff affect 
how/what we learn about the more fundamental 
stuff.  

Example: Suppose you measure TCMB(z) ≠ T0(1+z)? 

Does this say the universe is not adiabatically 
expanding or that there is some systematic (e.g. 
molecular collisional excitations)?  

Example: Suppose you measure DL(z) ≠ (1+z)2 DA(z)? 

Systematics in your different probes (e.g. galaxy selection 
function, Lyα metal contamination) or new physics (relation derived 
from 1. metricity, 2. geodesic completeness, 3. photons on null geodesics 
– conserved phase space density, 4. adiabatic expansion)? 
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Data Data Data! 

We need:  

•  Rigorous data  

•  Multiple probes  

•  Crosschecks  

•  Consistency at all cosmic times  

•  Check Expansion history and Growth history  

•  And now Gravitational Waves!  



7 7 

H0 Tension 

There is clear tension in H0 values between certain 
probes, taking the data at face value.  

There are some puzzles beyond the surface:  

•  Local measurements differ by more than 2σ 
depending on method, i.e. Cepheids vs tip of the 
red giant branch.  

•  It’s not “early vs late” cosmology since BAO 
(+BBN or marginalizing over rdrag), i.e. no CMB, 
gives the same answer as CMB.  

•  Strong lensing time delays show a sharp 
transition between low and high H0 around z ~ 
0.4, albeit with a small sample. 
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CMB and H0 

CMB data, fit in LCDM, gives “low” H0 ~ 67.  

CMB data, fit in wCDM, does not constrain H0.  

However, CMB+BAO does, giving low value.  

Very hard to get H0>70 and fit combined probes.  

H0>70 requires phantom DE, 
disfavored by CMB+BAO, CMB+SN Di Valentino, Melchiorri, 

Linder, Silk 2017 
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Two Outs 

Two ways out using the expansion history:  

•  Late time transition – very sharp phantom 
excursion so distances aren’t too affected.  

•  Early time transition – lower rdrag so H goes up. 
But must make sharp transition, removing early  
DE quickly to preserve CMB.  
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Early Time Transition 

  rdrag ~ § dz cs / H(z) 

Extra energy density raises H, lowers rdrag. 

The degeneracy between rdrag and H0 has long been 
known: Efstathiou & Bond 1998, Eisenstein & White 2004.  

Hojjati, Linder, Samsing 2013 actually detected an early time 
transition and its effect on H0!  
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and should improve further when adding high resolution
(high multipole l) measurements. The second bin has
equivalent constraints when taking into account its nar-
rowness. Around recombination, however, �3 and �4 have
looser bounds because all the standard cosmological pa-
rameters also enter strongly at this epoch, and so the
increased covariance dilutes their estimation. They have
the two highest correlation coe�cients, of 0.89 between
�3 and ⌦ch

2 and �0.76 between �4 and ⌦bh
2. Finally,

the late, broad bin of �5 has strong constraints. These
behaviors are all consistent with the pre-Planck, Fisher
matrix predictions of [3] (see their Fig. 4). Adding late
time data or priors (which we avoid; see concluding sec-
tion) can shrink some uncertainties by up to 60%.

The expansion history does not completely define the
system of Boltzmann equations: the e↵ective dark com-
ponent can have internal degrees of freedom such as
sound speed cs that determine the behavior of its per-
turbations and hence the gravitational clustering of the
photons [10]. Therefore we also show in Table I the con-
straints when this sound speed is equal to that of a rel-
ativistic species (c2s = 1/3), or is much smaller than the
speed of light, cold dark energy with cs = 0. The cs = 0
case has looser bounds, due to the additional influence on
the photon clustering with the strengthened gravitational
potentials, and covariance with matter parameters dur-
ing matter domination. For the c2s = 1/3 case, where the
extra expansion rate corresponds to extra relativistic de-
grees of freedom, the constraints are weaker during radi-
ation domination. This is a combination of the expansion
deviation acting just like the photons, and a slight prefer-
ence of the data for additional radiation energy density,
in accord with previous hints that the number of e↵ec-
tive neutrino species, Ne↵ , might be greater than the
standard model value of 3.046. Indeed, the mean value
of �2 = 0.026 in this case corresponds to �Ne↵ = 0.31,
in good agreement with the Planck values of Ne↵ = 3.39.
In all other parts of the article we keep cs = 1.

Case �1(10
�4.5) �2(10

�3.8) �3(10
�3.4) �4(10

�3.0) �5(10
�1.4)

c2s = 1 0.036 0.050 0.160 0.095 0.018
c2s = 1/3 0.053 0.054 0.067 0.038 0.013
c2s = 0 0.060 0.069 0.109 0.184 0.223

TABLE I. 95% confidence upper bounds are given for the ex-
pansion history deviations �, listed by the bin number and
midpoint of the log a bins, for cases with di↵erent sound
speeds.

Figure 3 shows the mean value and 68% uncertainty
band of the expansion deviations �(a) given by the Monte
Carlo reconstruction using the recent CMB data. This
figure represents the best current model-independent
knowledge of the early expansion history of our Universe.
Setting all �i = 0, i.e. ⇤CDM, is consistent with these re-
sults at the 95% confidence level. The mean value does
show a very slight preference for a faster expansion rate,
as in early dark energy or extra relativistic degrees of
freedom, before recombination.

FIG. 3. Reconstruction of the expansion history deviations
�(a) from ⇤CDM is shown, with the mean value (solid line)
and 68% uncertainty band (shaded area).

IV. PHYSICAL IMPLICATIONS

This analysis has been model independent, allowing in-
dividual epochs to float freely without assuming a func-
tional form. If we do assume a specific model, then con-
straints will in general be tighter, with each epoch having
leverage on others through the restricted form.
Three distinct families of early dark energy might be

considered: where the early dark energy density rises,
falls, or stays constant across CMB recombination. These
were investigated in [3] in terms of the (somewhat moti-
vated) models of barotropic aether, dark radiation, and
Doran-Robbers [11] forms, respectively (see [3] for more
detailed discussion). We compute the constraints on the
fraction ⌦e of critical density contributed by early dark
energy (approximately equivalent to �) within each of
these models (not using the �i bins), giving the results in
Table II. (Note that Planck finds ⌦e < 0.009 at 95% CL
for the Doran-Robbers model when also including high
multipole data [12].)

Aether Dark Radiation Doran-Robbers
⌦e 0.019 0.033 0.012

TABLE II. The 95% confidence level uncertainties are pre-
sented for three early dark energy models. For small values,
⌦e ⇡ �. The Doran-Robbers model has an additional param-
eter w0; we find w0 = �1.49+0.69

�0.57 (95% CL).

Two aspects of the models impact their detectability:
the presence of the expansion history deviation at a sen-
sitive epoch and its persistence over time, and its clus-
tering behavior. The common Doran-Robbers form has
the tightest bounds (despite the extra parameter), due to
its persistence pre- and post-recombination and its dis-
tinction from matter clustering since it has c2s = 1. The

Reconstruction from 
Planck13, WMAP9 data 

2

convergence tests. (A similar binned approach was used
in [4, 5] to bound early cosmic acceleration.)

We modify CAMB [6] to solve the Boltzmann equa-
tions for the photon perturbations in this cosmology. The
dark energy density contributed by the deviations � and
the cosmological constant term (which becomes negligi-
ble at high redshift) has an e↵ective equation of state

1 + w =
Q�

1 + �(1 +Q)
(1 + wbg)�

1

3

1 +Q

1 + �(1 +Q)

d�

d ln a
,

(3)
where Q = (⇢m+⇢r)/⇢⇤ and wbg is the background equa-
tion of state of the combined matter and radiation (e.g.
1/3 during radiation domination, transitioning to 0 dur-
ing matter domination). Thus w and w0 = dw/d ln a,
entering into the Boltzmann equations, are defined fully
by Eq. (2) for �. We choose the associated sound speed
to be the speed of light, as in quintessence dark energy,
but explore variations of this later.

Guided by the PCA of [3], we choose bins �1�5 in
the logarithmic scale factor log a = [�5,�4], [�4,�3.6],
[�3.6,�3.2], [�3.2,�2.8], [�2.8, 0] so the finest binning
is near CMB recombination at a ⇡ 10�3. The cosmo-
logical parameters we fit for are the six standard ones:
physical baryon density ⌦bh

2, physical cold dark matter
density ⌦ch

2, acoustic peak angular scale ✓, primordial
scalar perturbation index ns, primordial scalar amplitude
ln(1010As), and optical depth ⌧ , plus the five new devia-
tion parameters �1�5. Additional astrophysical parame-
ters enter from the data, as discussed in the next section.

III. CONSTRAINTS

To constrain the cosmology with the data we use
MCMC analysis, modifying CosmoMC [7]. The like-
lihood involves the temperature power spectrum from
the two satellite experiments, and the E-mode polar-
ization and TE cross spectrum from WMAP (the first
Planck likelihood release does not include polarization,
or the high multipole likelihoods from Atacama Cosmol-
ogy Telescope [8] or South Pole Telescope [9]; in the fu-
ture such data should become available). Astrophysical
nuisance parameters characterizing foregrounds (see [1])
are marginalized over.

Figure 1 shows the constraints on the standard cosmo-
logical parameters, in the ⇤CDM case (fixing �i = 0) and
when allowing variations in the expansion history (fitting
for the �i). Here the Hubble constant H0 replaces the ✓
parameter and we omit showing ⌧ . Including the fitting
for expansion history deviations induces roughly a factor
of two larger marginalized estimation uncertainties for
most of the standard cosmology parameters, and signif-
icantly shifts the cold dark matter density value. This
is due to the deviations in the Hubble parameter having
similar e↵ects on the expansion near recombination to
those in matter, so � takes the place of some of ⇢m. We
discuss this degeneracy further later. The best fit for the

⇤CDM case remains within the 68% confidence contour
when allowing expansion deviations.

FIG. 1. Joint 68% confidence contours on the standard cos-
mological parameters are shown when allowing for expansion
history deviations from ⇤CDM (black), and fixing to ⇤CDM
(smaller contours or dashed curves). Plots on the diagonal
give the 1D marginalized probability distributions.

Figure 2 shows the constraints on the expansion history
deviations. Note that to ensure positive energy density
(and Hubble parameter squared) we restrict � � 0, i.e.
equal or more early energy density than in the ⇤CDM
case (which has ⌦⇤ ⇡ 10�9 at a = 10�3). Note that these
binned deviations do not have appreciable covariances
with each other, with the correlation coe�cients under
0.26 except for �2–�3 at 0.49. This is a useful feature
adding near independence to localization, making their
interpretation transparent, and is a result of the careful
choice of bins based on the PCA of [3].

FIG. 2. Joint 68% and 95% confidence contours on the expan-
sion deviation parameters are shown. Plots on the diagonal
give the 1D marginalized probability distributions.

Table I gives the 95% confidence upper limits on
each expansion deviation parameter, showing that recent
CMB data provides 2–16% constraints on the expansion
history back to z = 105. The earliest bin, of �1, is reason-
ably constrained despite being well before recombination,

LCDM 
Recon 

The HLS approach has been 
rediscovered by Poulin+ 2019 and 
others.  

Early transitions don’t really 
work Hill+ 2003.07355. 

H0 
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Late Time Transition 

If we raise H(z), distances change. To keep distances 
viable, with larger H0 need smaller H(z>0), i.e. less 
energy density.  

Dark energy density has to suddenly appear – 
phantom w < -1.  

•  Phenomenological models, e.g. Li & Shafieloo 2019, 2020 

•  Fundamental theory – vacuum metamorphosis    
Parker & Raval 2000, Parker &  Vanzella 2004, Caldwell+ 2006 

•  Emergent theory – ubergravity Khosravi+ 2019 

 

Both VM and UG generalize Starobinsky R2 gravity, VM by 
including loops to all orders, UG by “summing over states” 
giving an  f(R) theory. 
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Does a Late Time Transition Work? 

With vacuum metamorphosis (same Npar as LCDM) 
one naturally gets H0 ~ 73 for CMB+BAO or 
CMB+BAO+SN (no R19 used).  

For a good fit to CMB, preserving Ωmh2 means a 
lower Ωm~0.27. That’s ok.  

However, it also gives a high amplitude for mass 
fluctuations σ8~0.88. This is due to the reduced DE 
density (needed to get distances right) and so 
greater matter domination and growth.  

That could be a problem. But S8=σ8(Ωm/0.3)0.5 ~ 0.83. 
So for some probes (maybe weak lensing, not 
clusters) it may be at least as good as LCDM?  
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No Tension Today 

VM gives H0 ~ 73 while not making S8 worse. 

Di Valentino, Linder, Melchiorri 2006.16291 
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Jam Yesterday* 

Focusing on 1 time is a bad idea. One has to take 
into account all cosmic times. 

* Lewis Carroll, 
Through the Looking-
Glass and What Alice 
Found There 
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Solution? 

Late time transitions don’t really work.     
(also see Benvenuto, Hu, Raveri 2002.11707) 

As seen, early time transitions don’t really work.  

One has to take into account all the data. 

One has to take into account all times. 

It’s not just H0, it’s H(z). [Focusing on 1 number is a bad idea.]   

It’s not just Ωm, it’s Ωm(z), i.e. σ8(z), fσ8(z).  

How do we solve it? Raise H0 but need to lower w, 
which raises σ8, so need neutrinos/interactions, 
which changes... Epicycles? Or systematics?  
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New Cosmological Probes 
Can we open a new window on the cosmological 
framework?  

Gravitational waves (as a new type of “stuff in the 
universe”) can probe the cosmological model.  

GW distances probe H0, but it’ll be a while until they 
reach the precision of current probes.  

GW are great at probing “spacetime friction”. This is 
like the Hubble friction that acts on LSS growth, but 
arises from MPl(z). It damps the GW amplitude, 
changing the inferred distance h ~ DGW

-1.  

Is gravity the same at all cosmic times? 

If not, then DGW(z) ≠ DEM(z). 
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Gravity at all Cosmic Times 

If gravity is not the same at all cosmic times then 

  DGW(z) ≠ DEM(z) 

That’s one important check. Precision with single events 
is not great (and need counterpart) so will (eventually) do 
statistically (just as we do with, e.g., supernovae, BAO, 
strong lenses).  
 

But changing gravity also affects LSS growth.  

This gives an important crosscheck: a deviation 
from GR in one predicts a specific deviation in the 
other. 
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Growth and GW together 

A deviation in GR in one can be crosschecked in the 
other, with different systematics. 5

We can plug this back into Eq. (5) to obtain

Glight =
αB + αM (1 + µ)

αB + 2αM
. (18)

Again note that one must solve the differential equation
to obtain αB(αM ). The early universe limit is Glight → 1
so µ → 1, αM → 0, αB → 0. The de Sitter limit is
Glight → 1 with αB → 2(1 −m2

p/M
2
⋆,dS), as in the Only

Growth Gravity case, and again the differential equation
is straightforward to solve.
Only Light Gravity is more difficult, however, in that

the denominator of Glight involves αB + 2αM and this
is exactly the prefactor in the α′

B equation. This means
that if at some point in the evolution of αB it reaches
or crosses −2αM , as the dynamical equation motivates,
then the gravitational strength diverges. We have not
been able to find cases yet where this does not occur
(e.g. trying the hill form for αM , or power law times
Gaussians), though we also have not found a proof there
is no nondivergent solution.

IV. OBSERVATIONAL FUNCTIONS

These modified gravity theories are highly predictive
(in the linear regime at least). With the expressions for
Gmatter, Glight, and M2

⋆ one can calculate observables in
growth and light propagation. Furthermore, [22] identi-
fied a clear link between predictions for cosmic growth
and for gravitational wave propagation. Basically, devia-
tions in cosmic growth predict deviations in gravitational
waves and vice versa.
This allows an important test for modified gravity – if

a signature is seen in growth of large scale structure, it
could be seen as well in the luminosity distances of gravi-
tational wave standard sirens vs standard candles. Such a
crosscheck is a valuable systematics test; while one might
find other cosmological model parameters or astrophysi-
cal uncertainties that could change growth and, say, the
CMB or lensing dynamics in a way that mimics modified
gravity (e.g. neutrinos or selection effects), such common
systematics are much less likely with a gravitational wave
comparison.
Therefore in this section we not only look at the obser-

vational effects on large scale structure growth through
the growth rate fσ8, but also their connection to obser-
vational effects on gravitational wave propagation. Re-
call that luminosity distances for photon sources, such as
supernovae, only depend on the background expansion,
which we are holding fixed when we change gravity from
general relativity. However gravitational wave propaga-
tion is sensitive to the Planck mass running [22, 30–37],
and so

dL,GW(a)

dL,γ(a)
=

[

M2
⋆ (a = 1)

M2
⋆ (a)

]1/2

. (19)

Figure 4 shows the prediction for both probes for No
Slip Gravity. We see the characteristic suppression of

FIG. 4. Deviations from general relativity in the cosmic
growth and gravitational wave distance predictions are con-
nected, and serve as a valuable crosscheck. Here the relations
are shown for dMG

L,GW/dGR
L −1 and fσMG

8 /fσGR
8 −1 for No Slip

Gravity, with model parameters cM = 0.03, at = 0.5, τ = 1.5.
Deviations will scale linearly with cM .

growth, at the 3–5% level, relative to general relativity,
over the currently measured range of redshifts using red-
shift space distortions as in Fig. 3 of [22]. But in addition
we plot the deviation in luminosity distance to gravita-
tional wave standard sirens relative to photon luminosity
distances, e.g. from standardized candles such as Type Ia
supernovae. At redshift z = 1 this model predicts a 1%
deviation in dL, concomitant with a 3% deviation in fσ8.
As measurements move to higher redshift, say z = 2, the
deviations become 1.6% in dL and 2% in fσ8. The num-
bers given are for cM = 0.03 and will scale linearly with
cM . The key point is that the gravity model predicts
exactly how they should be related at all redshifts, al-
lowing for leverage by combining several low signal to
noise measurements.

Figure 5 shows the growth and gravitational wave
quantities for Only Run Gravity. Here, the deviation of
the growth from general relativity is partially canceled
because the gravitational strength Gmatter is enhanced
at high redshift, but suppressed at low redshift, as seen
in Fig. 2. This increases fσ8 relative to general relativity
for a ! 0.5 but decreases it for a " 0.5. That allows
higher values of Planck mass running amplitude cM to
be viable for growth observations. However, the hiding
of the deviation in growth due to the cancellation does
not hold for the gravitational wave luminosity distance,
which sees simply the enhancement of M2

⋆ relative to m2
p.

Thus the two observational probes work extremely well
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FIG. 5. As Fig. 4 but for Only Run Gravity, with model
parameters cM = 0.1, at = 0.5, τ = 1.5. Relatively large
values of cM still give viable results for growth, allowing for
strong effects on gravitational waves.

together.
Figure 6 shows the growth and gravitational wave

quantities for Only Growth Gravity. This has a third, dis-
tinct behavior for the relation between growth and grav-
itational waves. Due to the rapid suppression of Gmatter

at early times, the growth gets off to a slow start, and
the continued weakness of gravity does not allow it to
recover, giving a strongly suppressed growth rate in the
observational epoch. This requires a small value of cM
for viability, which substantially reduces the signature
of deviation in gravitational waves. However this does
mean that cosmic growth measurements can probe much
smaller cM values than the other models discussed.
Thus we have seen that cosmic growth rate measure-

ments through redshift space distortions and gravita-
tional wave luminosity distance measurements through
standard sirens have great complementarity. The three
models we discussed in this section have distinct signa-
tures in each, with predictions for their respective red-
shift dependences. Measurements through both probes
could not only test general relativity but distinguish be-
tween these classes of gravity models: No Slip Grav-
ity gives discernible deviations in each, Only Run Grav-
ity has a larger effect on gravitational waves, and Only
Growth Gravity has a larger effect on the cosmic growth
rate. (And of course Only Light Gravity has no effect on
growth, only on gravitational waves, while No Run Grav-
ity has no effect on gravitational waves, but enhances
growth.)
We demonstrate the clear leverage for distinguishing

FIG. 6. As Fig. 4 but for Only Growth Gravity, with model
parameters cM = 0.01, at = 0.5, τ = 1. Note that the
early time, and sustained, weakening of Gmatter as seen in
Fig. 3 have a strong effect to suppress growth. This indicates
that even small values of cM can have an observable effect
on growth, though then the effect on gravitational waves be-
comes negligible.

the classes of gravity by defining a new statistic,

DG(a) =
dMG
L,GW/dGR

L

fσMG
8 /fσGR

8

. (20)

In general relativity this is simply a constant with value
unity for all a. However each of the classes of modified
gravity we discussed will not only show in the DG statis-
tic deviations from unity (testing general relativity), but
have a distinct shape with redshift. While scaling cM
will change the amplitude, it will not mix the shapes.
Figure 7 illustrates that indeed the different models are
highly distinct in the DG statistic.

V. CONCLUSIONS

We assessed in a systematic way limits of modified
gravity in terms of property functions and observational
functions, including introducing three new classes of
modified gravity. Such limits are simpler than the full
freedom of gravity theories but are more predictive, and
display clear signatures that observations can use to test
general relativity and distinguish between theory classes.
For the three new theories – Only Run Gravity, Only

Growth Gravity, and Only Light Gravity – we compute
the key functions of the gravitational strengths for cosmic
growth and for light deflection, Gmatter and Glight, and
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FIG. 5. As Fig. 4 but for Only Run Gravity, with model
parameters cM = 0.1, at = 0.5, τ = 1.5. Relatively large
values of cM still give viable results for growth, allowing for
strong effects on gravitational waves.

together.
Figure 6 shows the growth and gravitational wave

quantities for Only Growth Gravity. This has a third, dis-
tinct behavior for the relation between growth and grav-
itational waves. Due to the rapid suppression of Gmatter

at early times, the growth gets off to a slow start, and
the continued weakness of gravity does not allow it to
recover, giving a strongly suppressed growth rate in the
observational epoch. This requires a small value of cM
for viability, which substantially reduces the signature
of deviation in gravitational waves. However this does
mean that cosmic growth measurements can probe much
smaller cM values than the other models discussed.
Thus we have seen that cosmic growth rate measure-

ments through redshift space distortions and gravita-
tional wave luminosity distance measurements through
standard sirens have great complementarity. The three
models we discussed in this section have distinct signa-
tures in each, with predictions for their respective red-
shift dependences. Measurements through both probes
could not only test general relativity but distinguish be-
tween these classes of gravity models: No Slip Grav-
ity gives discernible deviations in each, Only Run Grav-
ity has a larger effect on gravitational waves, and Only
Growth Gravity has a larger effect on the cosmic growth
rate. (And of course Only Light Gravity has no effect on
growth, only on gravitational waves, while No Run Grav-
ity has no effect on gravitational waves, but enhances
growth.)
We demonstrate the clear leverage for distinguishing

FIG. 6. As Fig. 4 but for Only Growth Gravity, with model
parameters cM = 0.01, at = 0.5, τ = 1. Note that the
early time, and sustained, weakening of Gmatter as seen in
Fig. 3 have a strong effect to suppress growth. This indicates
that even small values of cM can have an observable effect
on growth, though then the effect on gravitational waves be-
comes negligible.
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tic deviations from unity (testing general relativity), but
have a distinct shape with redshift. While scaling cM
will change the amplitude, it will not mix the shapes.
Figure 7 illustrates that indeed the different models are
highly distinct in the DG statistic.
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functions, including introducing three new classes of
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In general relativity this is simply a constant with value
unity for all a. However each of the classes of modified
gravity we discussed will not only show in the DG statis-
tic deviations from unity (testing general relativity), but
have a distinct shape with redshift. While scaling cM
will change the amplitude, it will not mix the shapes.
Figure 7 illustrates that indeed the different models are
highly distinct in the DG statistic.

V. CONCLUSIONS

We assessed in a systematic way limits of modified
gravity in terms of property functions and observational
functions, including introducing three new classes of
modified gravity. Such limits are simpler than the full
freedom of gravity theories but are more predictive, and
display clear signatures that observations can use to test
general relativity and distinguish between theory classes.
For the three new theories – Only Run Gravity, Only

Growth Gravity, and Only Light Gravity – we compute
the key functions of the gravitational strengths for cosmic
growth and for light deflection, Gmatter and Glight, and

For GR this is 1 for all z. For MG model it has a  
specific redshift dependence predicted.  
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FIG. 7. The new DG statistic, using the complementarity
of the gravitational wave luminosity distance dL,GW and the
cosmic matter growth rate fσ8, can clearly distinguish differ-
ent classes of gravity. Each class has a distinct shape in its
redshift dependence DG(a). General relativity has constant
DG = 1.

the gravitational slip η̄ and scalar perturbation sound
speed squared c2s. Interestingly, Only Run Gravity pro-
vides a definite demonstration that the deviations from
general relativity Gmatter − 1 and Glight − 1 for matter
and light can have opposite signs, which has been a topic
of conjecture. These theories can also provide suppressed
matter growth, in contrast to many scalar-tensor theories
and in some accord with observations.
In addition to solving for the evolution of these key

functions, we also calculate two observational quantities.
One is fσ8, the cosmic growth rate for large scale struc-
ture perturbations, measurable through redshift space
distortions in galaxy surveys such as DESI [38]. The

other is the luminosity distance to gravitational wave
standard siren events, dL,GW, which can differ from the
photon luminosity distance to standard candles such as
Type Ia supernovae, despite a gravitational wave propa-
gation speed equal to the speed of light.

Conjoined analysis of the two observables, fσ8 and
dL,GW, as introduced by [22], is highly insightful. For
one thing, they offer a critical crosscheck for systematic
control. As well, there is a diversity of behaviors between
the classes of gravity in the magnitude of deviations in
one vs the other, and predictive power in the specific
redshift dependence between the two. This enables even
low signal to noise measurements at individual redshifts
to combine to give significant evidence to test general rel-
ativity and distinguish classes of gravity. We defined a
new statistic DG to use for the conjoined analysis of the
two probes, illustrating that it has distinct redshift de-
pendence for different classes. Future measurements will
demonstrate the strong complementarity of these probes.
Other combinations of gravitational wave and large scale
structure information are discussed in, e.g., [39, 40].

There is still much to understand about modified grav-
ity, especially if one starts furthest from the observations
with the Gi(φ, X) functions in the Horndeski lagrangian.
The relation between these functions exhibited by, e.g.,
Only Run Gravity and No Slip Gravity may provide some
direction to future investigations, but here we focused
on quantities closer to the observations. The approach
of Limited Modified Gravity gives a framework that is
tractable, predictive, and yet with a range of important
characteristics that can yield insights when confronted
with forthcoming data.
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Summary 

The cosmological framework is multilayered, with 
strong support for the deepest foundations.  

LCDM works quite well, and it’s not clear where 
“tensions” would be addressed.  

All cosmology, all the time!  

Early or late time transitions unlikely as the answer. 
•  Why are there ~10’s times more papers on unusual 

theories than on data systematics?  

New probes are always welcome.  

Is gravity the same at all cosmic times?  

•  New statistic DG: GW vs growth – predictive.  


