The SCP Database

With stand & Advert

Attende Ter and Star manage Support and their an at

What is the Database?

- Strictly speaking, it's how the SCP stores information it needs to find SNe
- It is NOT intended to do high precision photometry
- I will expand this lecture to cover code

Why the Database

- Image headers are very irregular
- Allows us to guarantee certain info is available
- The filesystem makes a poor database

Tables in the database

- Images
- Transformations between images
- Candidates
- Object information (not really in db)
- sntrak
- spectra
- other stuff (filelocks, subng, etc.)

Different code bases

• Deepidl (IDL code)

 Many routines are wrappers around c routines (kept in deepsrc/idlcsrc)

- Deeplib (C++ (mostly) code)
 - Under development
 - cvs -d \$dh/master checkout deeplib

Anatomy of an image name

apr122002cfht12kk9703cln.fts

- Date
- Telescope/Detector
- Chip ID (optional)
- Type of image (image extension)

Image extensions

The provide tor and the men we completed they is at Low and the transmitted in the stand of a stand of the stand

• Several different types of images	cln/rdcd	Normal
	csg/surf	Surfaced
 Surfacing removes background gradient 	com	compressed
 Coadded images are used to find SNe 	sum	coadded
	cry	cosmic ray cleaned

Guarantees about images

- Read DRED (http://panisse.lbl.gov/groupwork/ documentation/dred.pdf -- not totally current)
- Flatfielded, bias subtracted, etc.
- Gain is known (multiplied in when read by our code)
- We know how to get it into approximately N down, East left orientation
- image mode and standard deviation are known
- RA and DEC are known approximately, as is approximate pixel scale
- Date is known

How to Load an image

- Done with ltelescope
- Has to know where to look for information
 - In header
 - Supplied directly by user
- Renames images and loads info into db tables, but doesn't move images

Working with images in IDL

- read with freadimage2
- find objects and properties with freduceimage2
 - finds objects: isofind (must be surfaced with edgsurface)
 - aperture photometry: apercent
 - object id: fcatalog (sucks)

• Info read in as IDL structures (help /str)

Transformations

• Transformations are parameterized by trorder

- Transformations between different images stored in transformations table
- Transformations to USNO/ APM catalog are in images table and are used for astrometry

0-4	Inter-image polynomials
100-104	HST WFPC2 transforms
200-204	APM
300-304	Inverse APM

Inter-Image Transformations from IDL

- Info is in trns_struct
- Read with readtransimages
- Apply to positions with transpho2
- Apply to images with moveimage2 or moveimagespline2
 - moveimage preserves flux but blurs
 - moveimagespline prevents blurring, but doesn't preserve flux
- Calculate with ftransimages2
- evaluate with ftranseval2

APM/USNO Transforms

- Info stored in ims_struct from image table
 Calculated by apmmatch2 (automatically called from freduceimage2)
- Evaluate with apmeval2
- Make fake USNO images with getapmcatalog/makeapmimage

Working with images in Deeplib

- Mostly work the same way as the IDL routines
- Most have some additional features
- Still under development for upcoming HST search

Getting more info

 panisse.lbl.gov/groupwork/documentation
 structure fields in documentation/ dbidl.html