Magnitudes, Colors, and Photometric Systems

(Or: why astronomers give us magnitudes instead of something useful like a flux.)

Counts to Magnitudes (Ideal case)

Assuming you have a linear response: Flux = counts x constant Then, to go from counts or flux to Pogson magnitudes: $mag = -2.5 \log_{10}(F/F_0)$ = -2.5 log₁₀(F) + Constant

where:

F₀ is the flux of an object with mag = 0 "Constant" is called the zeropoint (ZP)

 $mag = -2.5 \log_{10}(F) + ZP$

Counts to Magnitudes (Real world case)

 $mag = -2.5 \log_{10}(F) + ZP + AtmosphereTerm(t) +$ ColorTerms + AtmColorTerm(t) + ... $= -2.5 \log_{10}(F) + X$...anything you neglect can end up in the zeropoint! Full hairy SDSS example: 0.5m PT r-band formula: $r = -2.5 \log_{10}(counts/sec) - ZP_r - k_r(t)X$ $-b_{r}[(r'-i')-(r'-i')_{zp}] - b_{2.5m}[(r'-i')-(r'-i')_{zp}]$ $-c_{r}[(r'-i')-(r'-i')_{zp}](X-X_{zp}) + zpOffset(r)$

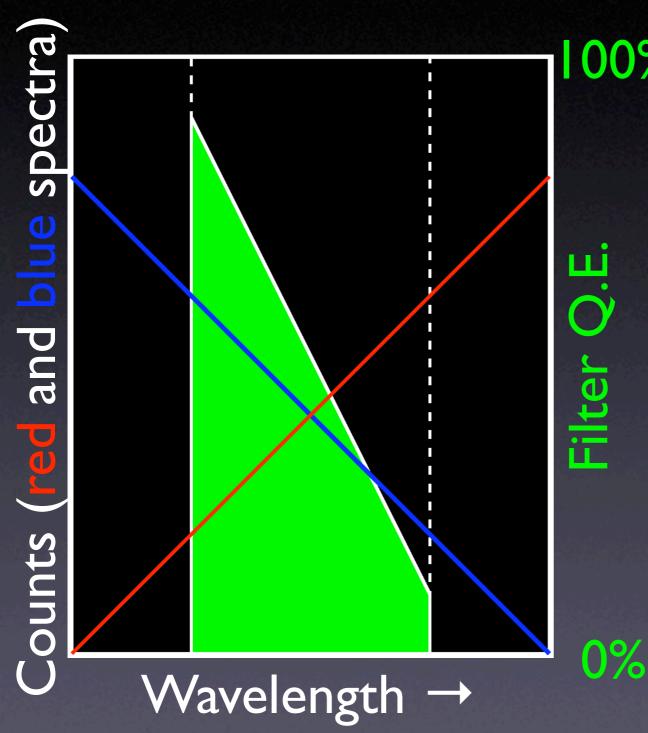
"Luptitudes" (The nightmare continues)

Magnitudes behave badly at low signal to noise since $log_{10}(0) = -\infty$ and only gets worse for negative counts. Thus asinh (inverse hyperbolic sine) magnitudes were born: $mag_{asinh} = -(2.5 / ln(10)) \times [asinh(2b F/F_0) + ln(b)]$ where b is set by the I sigma noise level.

For any reasonable signal to noise this differs from normal magnitudes by less that 1%, and it doesn't blow up even for negative counts.

(Lupton, Gunn & Szalay 1999)

Color?

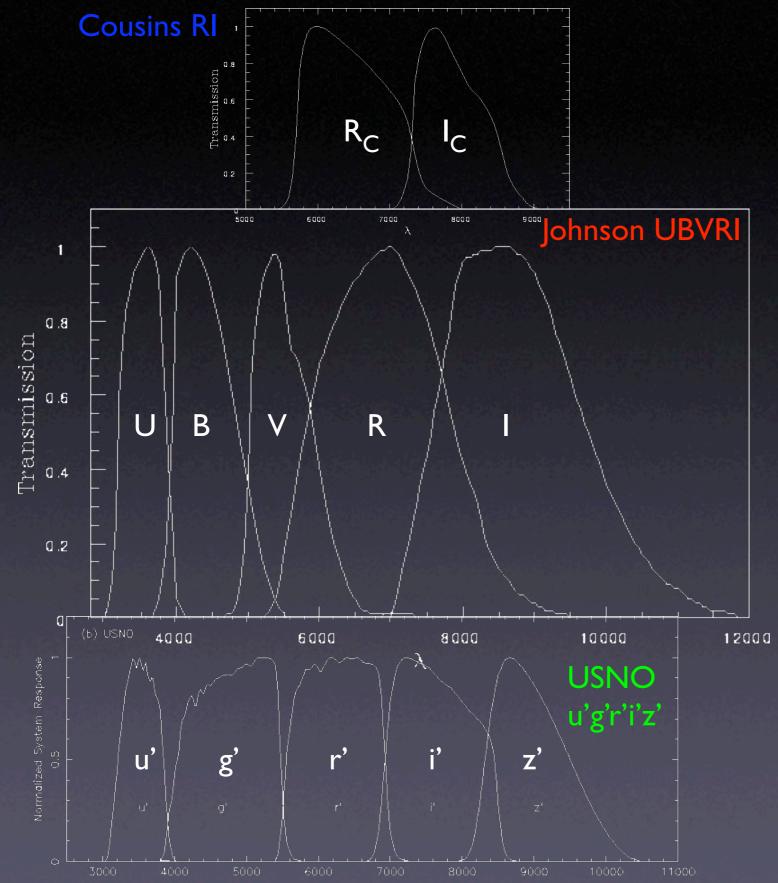

color ≠ filter!

color = "blue" filter - "red" filter
 negative color = "blue"
 positive color = "red"

ex: star with magnitudes g = 20, r = 18 g-r = 2 g-r "color" is red

...but what does color mean? (Red compared to what?) And why do you need color terms?

Color Terms



100% green = filter response curve
 blue = blue spectra counts
 red = red spectra counts

red counts $\int response(\lambda)red(\lambda)d\lambda$ \cong 75% of blue counts $\int response(\lambda)blue(\lambda)d\lambda$

 \cong 0.25 mag calibration error without a color term

Common photometric systems

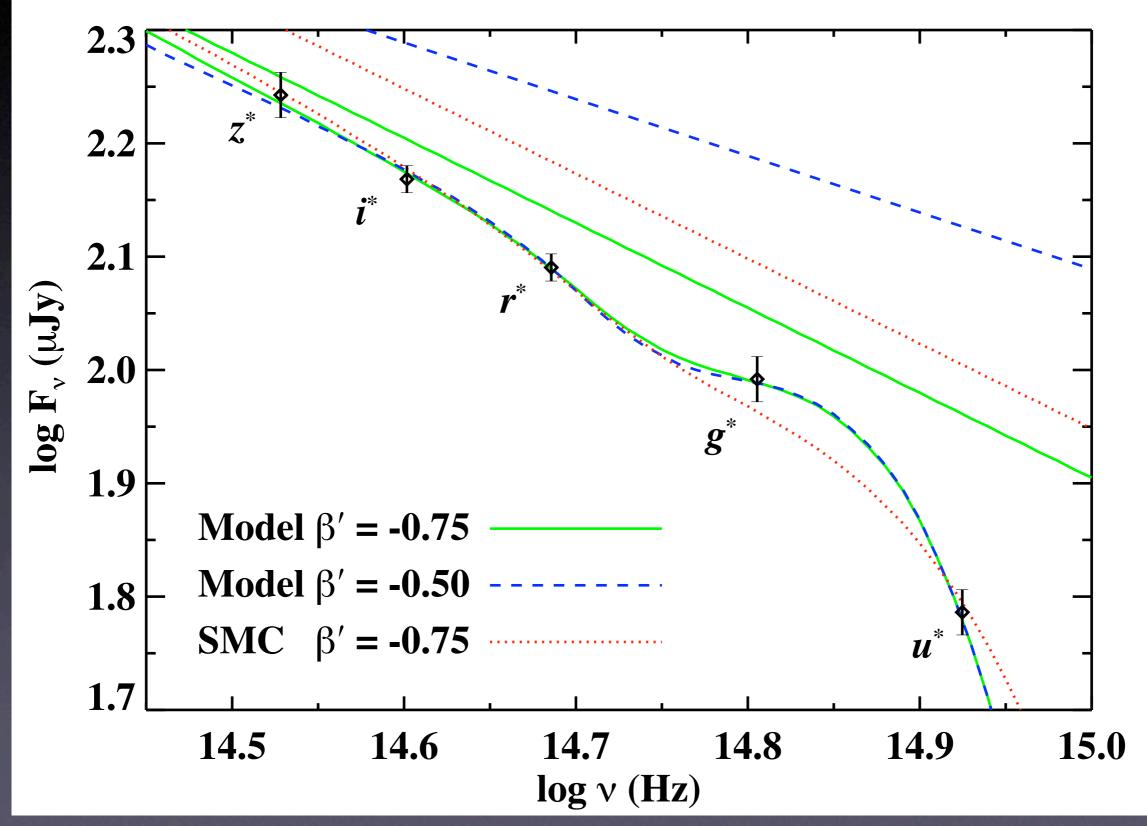
UBVRI and RI from http://obswww.unige.ch/gcpd/filters

Filter	effective λ (nm)	FWHM	Vega
u	355	60	+1.08
U	360	50	0
В	440	100	0
g	468	140	-0.08
V	550	80	0
r	617	140	+0.14
R _C	660	160	0
R	700	220	0
i	748	150	+0.34
I _C	810	150	0
	880	240	0
z	893	100	+0.54

Photometric Systems: Choosing Zeropoints and Defining Color

Two major basic systems: <u>Vega based</u> and <u>AB</u>

VEGA BASED: (Ex: Johnson UBVRI)


- Vega (or stellar type A0 or some other standard star) as observed through the filters is defined as mag_{Vega} ≡ 0 in all bands
 → (U_{Vega}=B_{Vega}=V_{Vega}=R_{Vega}=R_{Vega}=I_{Vega}≡0)
- All Vega colors are 0
 → (U-B)=(B-V)=(V-R)=(R-I)≡0
 → if something is red/blue, it's only relative to Vega
- Calibration is well defined and easily verifiable/reproducible
- Magnitudes from different bands on the same plot are meaningless.

Photometric Systems: Choosing Zeropoints and Defining Color

<u>AB Magnitudes</u>: (Ex: SDSS ugriz) (the choice of physicists and bane of astronomers)

- $F_0 = 3631$ Jy (Jy = 10^{-26} W/m²Hz) in all bands $\rightarrow AB_v = -2.5 \log_{10}(F_v) - 48.60$ where $F_v =$ flux in ergs/sec·cm²·Hz
- Colors are relative to a "flat" spectrum
 → something that's really red/blue has red/blue "colors"
- Multi-band plots are physically meaningful log flux plots!
- No real object has this spectrum
 - \rightarrow calibration is difficult (impossible?) and thus suspect.

AB magnitudes example: GRB010222

Sloan Digital Sky Survey

Photometric Survey: 10,000 □° (1/4 of the sky)
Depth of r~23 in 5 bands (ugriz)
Spectra of 1,000,000 galaxies (zmedian ~ 0.1)
Spectra of 100,000 quasars (to z~6.5)

Example: SDSS Calibration

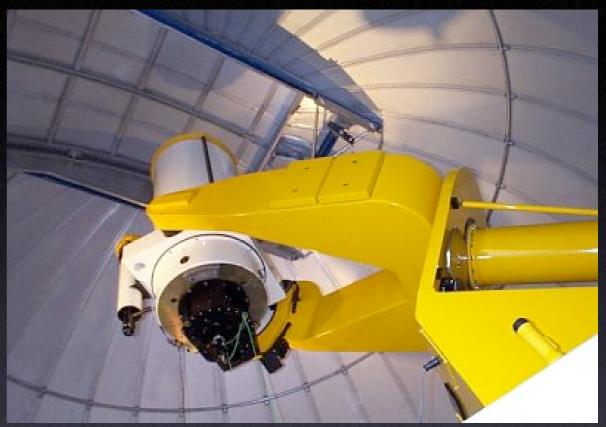
Telescope	Filters	Stars	r-band mag
many	spectra	Vega	~0
many	spectra	BD+17°4708	9.35
USNO I.0m	u'g'r'i'z'	158 Primary	≈ 8 to 13
PT 0.5m	(ugriz) _{PT}	Primary + Secondary	≈ 8 to 13 ≈ 14 to 18
SDSS 2.5m	ugriz	final data	≈ I4 to 23

From BD+17 to SDSS limit > a factor of 100,000 in flux

SDSS Standard Star: "BD+17"

BD+17°4708:
◆ F subdwarf
◆ Vega calibrated spectrophotometry used to set AB zeropoints to define the u'g'r'i'z' system.

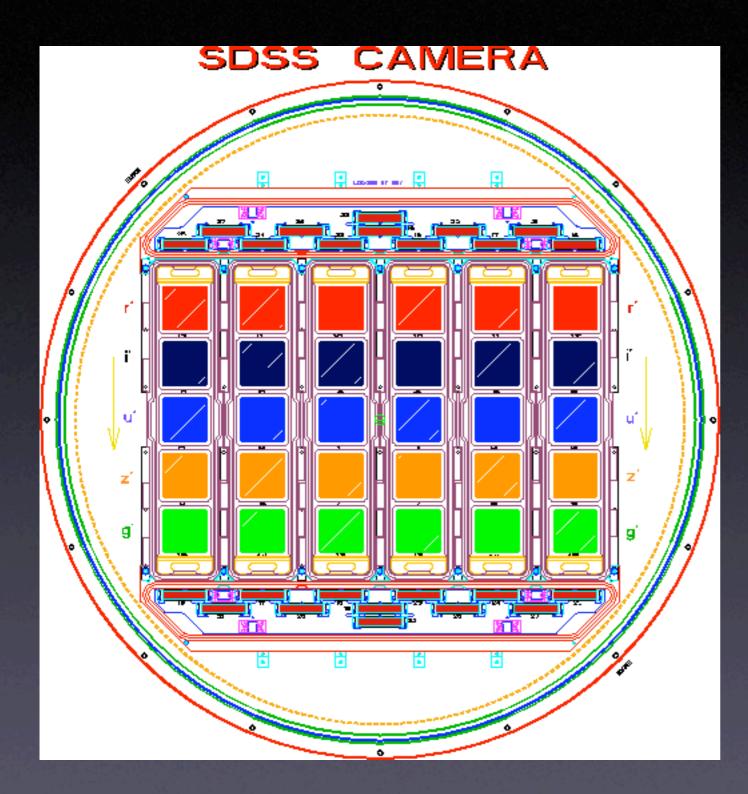
BD+17 to Primary Standards

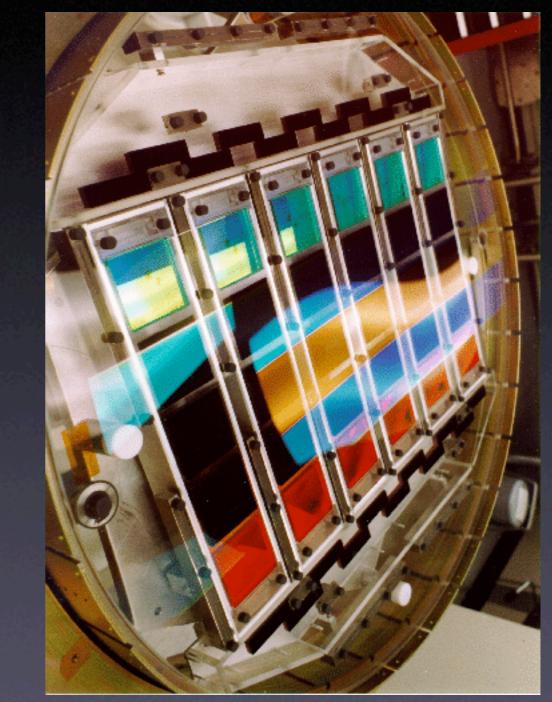

• Hardware:

- USNO 1.0m telescope
- Single thinned CCD
- u'g'r'i'z' filters in ambient air (mostly stable)
- Observations:
 - BD+17 (and two other F subdwarf standards) repeatedly observed to track system definition
 - ~200 other standard stars (r 8-13) repeatedly observed and calibrated against the reference standards.
 - 183 nights over a 3 year period

Primary to Secondary Standards

• Hardware:


- SDSS 0.5m telescope
- Single CCD,
 u'g'r'i'z' filters in dry nitrogen
 (unstable until filters replaced!)
 → now called [ugriz]_{PT}



• Observations:

- Alternating observations of "primary" and "secondary" standards
 - Primary standards observed nightly to monitor atmosphere and determine calibration
 - Secondary standard fields which overlap main survey fields observed to transfer calibration to 2.5m data (approx I field every I5 degrees along a stripe)

SDSS 2.5m camera

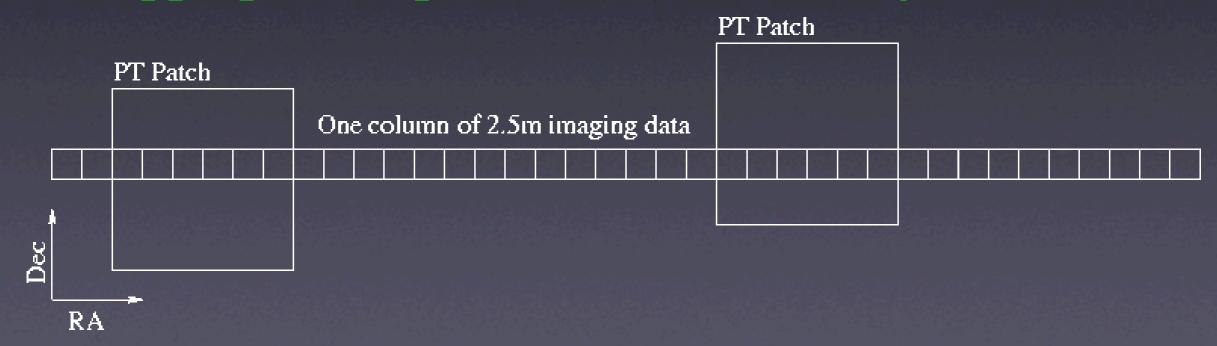
Final Calibration

• Hardware:


- SDSS 2.5m telescope
- 54 (30) CCD camera
 6 each stable but shifted u'g'r'i'z' filters in vacuum → now called [ugriz]

• Observations:

- 6 columns x 5 CCD/filter combinations
- Driftscan stripes 2.5° wide, up to 90° long (interlaced with a second scan to fill in gaps), overlap 0.5m secondary patches every 15°
- PT zeropoints and extinction coefficients transfered to 2.5m survey data


Final Calibration

Extinction (k) measured approx. every 3 hours

Time

Overlapping PT magnitudes measured every hour

Checking the SDSS Calibration

Internal:

Overlaps Crossing stripes Chip to Chip Zeropoint Ratios History of Zeropoints

External:

Comparison to other catalogs Comparison to models Direct observation of the standard Results:

> Statistical RMS uncertainty: 2% gri, 3% uz Offset from a true AB system: <1% gri, 2-4%? uz

References

Asinh magnitudes: Lupton, Gunn & Szalay 1999

u'g'r'i'z' system: M. Fukugita et al. 1996, AJ 111:1748 u'g'r'i'z' Standard Star Catalog: Smith et al. 2002, AJ, 123: 2121

SDSS calibration: Stoughton et al. 2002 (SDSS EDR paper) http://www.sdss.org/dr2/algorithms/fluxcal.htm