
Data Reduction for the Deepsearch

by R. Knop
with S. Deustua

Version 1.4.0

2002 June 12

Data Reduction for the Deepsearch

Chapter 1

Images & Diagnostic Tools

1.1 Deeplib and IRAF

There are two different tools you may choose between for doing the bulk of your
photometric data reduction.

IRAF NOAO’s “Image Reduction and Analysis Facility” is a huge and powerful
package, and the closest thing there is to a standard for reduction of optical
images. It has most everything you need, and is a robust and well-tested system.
Unfortunately, it’s cantankerous, in many ways annoying, and a bit too much
of a black box. Every command has so many options that it’s easy to do the
wrong thing without realizing it. IRAF tools must be run from within IRAF.

You may wish to learn IRAF and do most of your data reduction therein. There
are some final steps which will require other software, but you can get most of
the way there entirely with IRAF. IRAF is a standard, and is well supported,
and there are some advantages to doing this.

This manual will assume that you will be using Deeplib (see below) for most
of the reduction. However, there will be some steps which require either IRAF
(e.g. splitting up an image stack) or Deep/IDL (e.g. loading images into the
database).

Deeplib Deeplib refers both to a C++ library and a set of utilities being developed
by Rob Knop, Alex Conley, Michael Wood-Vasey, and Nicholas Regnault (with
some help from a few others) for use with SCP data and database. The Deeplib
utilities all run from the command line. They often have a lot of options,
although defaults tend to be set to “sane” values for typical Deepsearch data.
They do not support parameter files as does IRAF, which while in some cases
less convenient, also avoids the trap of your using the defaults for a different

-2-

Data Reduction for the Deepsearch

data set on the current data set without realizing it. With almost any Deeplib
utility, you can get a description of how to run it by running the command with
the single argument “--help”; for example, try “overscan --help”. Although
many tools immediately useful for data reduction are fully usable, Deeplib is
still under development. Most of the Deeplib utilities on computers where it
is installed can be found in /usr/local/deeplib, although this may vary on
your system. If you are lucky, the utilities are already in your path and you
don’t have to think about it.

Deep/IDL IDL is standard data reduction language. “Deep/IDL” refers to the
large collection of software which has been written for the Deepsearch in IDL.
There are some steps of data reduction (particularly towards the end) which
are either easier with Deep/IDL, or which require Deep/IDL. To use Deep/IDL,
your system must be set up with the right IDL paths and so forth. Talk to your
local Deepsearch computer guru.

1.2 Command Line Conventions in this Docuemnt

Note that many Deeplib (or other Unix command-line) commands below will be longer
than fit on one line of the page. These will have a backslash (\) at the end of every
line but the last line. If you are typing on the Unix command line, and you have a
backslash as the very last character of the line (i.e. with no spaces after it), Unix
will know that you’re not done typing the command yet, and will prompt you for
more. Alternatively, you may type the whole mess on a single line (perhaps wrapping
if there are more characters tha fit across the width of your terminal). For any Unix
command in this document which is very long, omit the backslashes if you are typing
the command into a single line on the terminal.

1.3 Terminology

This manual will glibly throw around a number of terms, the definitions of which
are necessary to know in order to understand the text. These are some of the more
important terms:

image The term “image” means two things. The most basic definition is a two-
dimensional collection of pixels, that together represent the spatial distribution
of light on a given region of the sky. The second definition is a file in memory or
on disk that stores the image data. This second definition is sometimes referred
to as an “image file.” Note that in the process of data reduction, you will create
“images” that don’t represent any given region of the sky.

-3-

Data Reduction for the Deepsearch

frame Sometimes used as a synonym for “image.” Also a Deep/IDL command.

flatfield (1) A noun that means an image used to calibrate out gain variations in the
pixels of an image. A “combined flat” is one that has been put together from
several individual flatfields. Sometimes, in the case of sky flats, your individual
flatfields may be the same as your target images. (2) A verb indicating the act
of applying a flatfield correction to an image.

zero image (Also sometimes called a “bias image”.) This is an image that has the
pixel-to-pixel variations and overall structure of a “zero-time” exposure. You
want to to subtract this structure from your data. A “combined zero” is a better
zero image which has been created from several (5-11, usually) individual zero
frames.

reduce The term “reduce” has unfortunately acquired a nonstandard meaning in
the Deepsearch, and so tends to be used ambiguously. In Astronomy in general,
to “reduce data” is to take the raw data from a telescope, and apply what-
ever corrections and calibrations are necessary to produce a usable image from
which measurements can be directly taken. Among the Deepsearch, this process
has traditionally been called “cleaning”. You will occasionally hear the terms
“reduce” and “clean” used interchangeably. The second definition of “reduce”
comes from the Deepsearch IDL routine reduceimages, which finds all of the
objects on a frame, stores their positions and fluxes in a file, and calculates
and stores some rough estimates of the sky noise, atmospheric blurring, and
photometric solution for an image. This second form of “reduction” is normally
done on images which have already been “reduced” (or “cleaned”) in the first
sense of the word.

observer The person who was at the telescope taking the data. Also known as the
“yahoo at the telescope.” You are not the observer. You are the data monkey.

RA and Dec Right Ascension and Declination. The standard celestial coordinate
system. Pretend that the sky is a spherical shell about us, with stars and
galaxies painted on it. RA and Dec are coordinates on the inside surface of
that spherical shell exactly analogous to the coordinates longitude and latitude
as used on the surface of the earth. A declination of 0 indicates the equator;
positive is Northern hemisphere, negative is Southern hemisphere. RA is mea-
sured in hours, minutes, and seconds, for reasons that make a lot of sense if you
think about what happens on the sky when the Earth rotates. 24 hours of RA
corresponds to 360 degrees of RA.

IRAF See Chapter 666, “Hell”.

-4-

Data Reduction for the Deepsearch

1.4 FITS Images

Although occasionally you will run across different file formats, the most popular
image format, and about the only image format used by the Supernova Cosmology
Project (SCP), is the FITS format. FITS stands for “Flexible Image Transport
System,” but that isn’t really important. FITS images usually have filenames that
end in “.fts”, “.fits”, or “.fit”.

This document will only talk about “simple” FITS images. There are FITS ex-
tensions, and FITS image stacks, and FITS tables, and any number of other FITS
variants, many of which you will run into if you reduce Hubble Space Telescope (HST)
data.

Unless you are using IRAF and mscred, most of the steps of the data reduction will
be performed on “simple” FITS images. Many modern cameras (including the WIYN
MiniMosaic and CTIO Mosaic cameras) have multiple chips, and return extended
FITS files or image stacks. In this case, the first thing you must do is break the
image stack out into individual images.

A simple FITS image is divided into two logical components: the header, and the
body or image data.

1.4.1 FITS Headers

The header is a series of character strings that gives you information about an image.
The exact specification of a header varies distressingly from telescope to telescope,
but normally there is enough information in the header of an image to tell you almost
everything you need to know to reduce that image. Each header record has a keyword,
a value, and an optional comment. Typical information encoded in a good header
includes the coordinates (right ascension and declination) of the observation, the time
(date and UT) of the observation, the name of the telescope and detector, and the
length of the exposure (usually in seconds). Additionally, a good header has other
information about the camera, such as the gain, any modifiable operating parameters.
Finally, there is usually a “title” or “object name” which the observer at the telescope
is able to set before an observation.

WARNING: Fits headers are mercurial. Different observatories have different
standards. ESO, in particular, has a very strange idea of what a FITS Header ought
to look like. (If you have images from the VLT, NTT, or another ESO telescope,
use the Deeplib command dehierarch to change the FITS headers into something
sane.) Be very careful to insure that what you find is what you are looking for. For
instance, most headers report the “gain” in units of e-/ADU, but some report the
inverse as the “gain”. As another example, the equinox quoted in the WIYN header

-5-

Data Reduction for the Deepsearch

is usually wrong; what is quoted is the date of the observations, not the equinox of
the coordinate system.

The following is an excerpt from a header produced by the LRIS camera on the
Keck telescope:

SIMPLE = T / Fits standard

BITPIX = -32 / Bits per pixel

NAXIS = 2 / Number of axes

NAXIS1 = 1640 / Axis length

NAXIS2 = 2048 / Axis length

EXTEND = F / File may contain extensions

ORIGIN = ’NOAO-IRAF FITS Image Kernel Aug 1 1997’ /

DATE = ’24/03/99 ’ / Date FITS file was generated

IRAF-TLM= ’16:16:07 (24/03/1999)’ / Time of last modification

OBJECT = ’Keck031 ’ / Name of the object observed

TRAPDOOR= ’open ’ /

SLITNAME= ’direct ’ /

GRANAME = ’mirror ’ /

REDFILT = ’I ’ /

UT = ’06:47:32.56’ /

AIRMASS = 1.00247227 /

TARGNAME= ’Keck031 ’ /

RA = ’23:20:21.50’ /

DEC = ’+15:56:08.1’ /

EQUINOX = 2000 /

TELESCOP= ’Keck II ’ /

PONAME = ’LRIS ’ /

FRAMENO = 202 /

OBSNUM = 202 /

EXPOSURE= 120 /

NUMAMPS = 2 /

AMPLIST = ’2,1,0,0 ’ /

COMMENT = ’* This image was generated by the Low Resolution Imaging’

COMMENT = ’* Spectrograph’

Although there is more in the Keck LRIS headers than is shown here, this illus-
trates the sorts of things that may be found in a header. The names in all caps at the
beginning of each line are the keywords. The information between the equals sign and
the slash on a line is the value associated with that keyword. The text after the slash
is the optional comment, and is present merely for the illumination of humans reading
the header. Sometimes you will see COMMENT or HISTORY keywords where there is no
equals sign; this is allowed according to the FITS standard.

-6-

Data Reduction for the Deepsearch

When you are trying to figure out what an image is, or you need information
about it such as what was the filter used during the observation, there are two places
you should look. One is the header of the image. The other is the logsheets taken
by the observers during the observation. It varies which is more reliable. For most
information, such as coordinates and filters, the header is usually more reliable. For
the titles of the images, the logsheets are usually more reliable. (This is because
observers tend to forget to update the titles of images before taking observations.)
Note that the best way to determine what the title of an observation should be is to
trust neither the object keyword in the header nor the logsheet. Rather, look at the
RA and DEC keywords in the header, figure out the position of the observation, and
then compare that to a target list. Normally this procedure is only necessary when
resolving confusion or fixing problems. Sometimes, even this doesn’t work, as some
telescopes have been known to put incorrect coordinates into the image headers. (At
that point, the problem gets harder, but its solution is well beyond the scope of this
manual.)

Too look at a header in Deeplib, use the command imheader from the Unix
command line:

% imheader filename | less

This will show you the contents of one header (piping the output through the pager
less; you may substitue more or another way of viewing the text output of a com-
mand). Once you figure out what the important keywords in a given set of data are,
you can get a summary of all the data files by using a command something like:

% hselect *.fits -v EXPTIME,FILTER,OBJECT

Of course, you will adjust the pattern appropriately to show the files you wish to list.
(For instance, if you have data from a multi-chip camera, the header information will
usually be the same across all chips. As such, you may only need to show the header
information from a single chip, and might use “* 1.fits” rather than “*.fits”.)
Similarly, you will want to make sure that the keywords you list are right for this run,
and you may wish to look at additional keywords.

1.4.2 FITS Image Data

The image data in a FITS image is stored after the end of the header, in a standardized
way that all software which can read FITS images (including IRAF) should recognize.
The FITS specification allows for images to be of any dimensionality between one and
99. This document only deals with normal, two-dimensional images. Such images

-7-

Data Reduction for the Deepsearch

have a “NAXIS” header keyword with a value of 2. “NAXIS1” gives the width of the
image (in pixels), and “NAXIS2” gives the height of the image. All three of these
keywords should be near the top of the header. Normally, you will never have to
think about this because FITS reading software understands how to take care of it.

Signal and Noise

Each pixel represents the amount of flux (light) that is in the portion of the image
covered by the size of that pixel. (Really, it’s related to a number of detection
photoelectrons, which is in turn more closely related to a photon count than a real
flux, but you shouldn’t have to worry about that for purposes of reducing data.) For
a normal raw sky image, this flux can come from a number of different sources:

f = b+ d+ s+ i

Where f is the total flux in the pixel, b is the bias value (a constant offset, which
can be positive or negative), d is “dark current” (flux that accumulates in the pixel
even when no light is falling on the CCD), s is sky background, and i is the actual
image data that we care about; usually, when somebody refers to the signal, i is the
value they mean.

Each pixel has a noise value associated with it as well. The noise is the funda-
mental limitation to how well you understand your signal. The symbol σ is usually
used to represent noise. Sometimes, it is more convenient to work with σ2, called
variance. The signal to noise ratio (S/N) is just that; higher S/N indicates a better
measurement. One primary purpose of data reduction is to eliminate as many sources
of noise as practical, so that the signal may be measured as well as possible given the
limitations of Physics. The following expression lists some of the sources of noise in
an image:

σ2

tot = σ2

r + σ2

z + σ2

d + σ2

f + σ2

s + σ2

i + σ2

?

σr is “readout noise,” a parameter of the CCD. σz is “zero noise,” which is any
variation in the bias of the chip from pixel to pixel; this noise is usually eliminated
during the “zero subtraction” step of image reduction. For most modern CCDs,
both of these sources of noise are relatively insignificant compared to the noise from
the sky background. (This is generally not the case with the HST, where the sky
background is extremely low.) σd is the noise due to the dark current, and ideally has
a value σd =

√
d. σf , or “flatness noise,” is (effectively) noise due to pixel-to-pixel

gain variations. Correctly performed flatfielding (see chapter 3) should eliminate the
bulk of this noise. σs is photon noise in the sky background, and ideally has the

-8-

Data Reduction for the Deepsearch

value σs =
√
s. σi is photon noise from the object observed, and ideally has the

value σi =
√
i. In the case where i ¿ s (which is true for most of the ground-based

observations of supernovae in the Deepsearch), σi is insignificant compared to σs. σ?

is noise, measured in an image, of uncertain source. If you understand your images,
and have performed a careful reduction procedure, it should be very close to zero,
but frequently the image quality of reduced images does not get exactly all the way
down to the photon shot noise limit.

The Lower-Left Pixel

FITS images are normally stored and displayed so that the lowest numbered pixel
is the lower left pixel. (This is in contrast to other computer images such as are
found on the World Wide Web, where the lowest numbered pixel is the upper left
pixel.) Frequently, it is useful to refer to positions on the image using a continuous
coordinate system, i.e. floating point numbers, so that distances between objects
can be given to precision better than one pixel. There are a number of different
conflicting conventions for mapping pixels onto a continuous coordinate system. The
difference can be summarized by indicating how each system defines the coordinates
of the lower left pixel of the image (see Figure 1.1). There are two issues. One is
whether the lower left pixel of the image is (0,0), or (1,1). The second issue is whether
the “integer” coordinates of a pixel refer to the center of the pixel, or the lower left
of the pixel. IRAF defines (1,1) to be the center of the lower left pixel. The IDL
Deepsearch software defines (0,0) to be the center of the lower left pixel. The C++
Deeplib software, for the sake of simplicity and backwards compatibility, shares the
definition of the IDL Deepsearch software. This is a tragedy, because he most logical
and (alas) least common definition is that (0,0) is the lower left corner of the lower
left pixel (and hence of the entire image). Rob Knop’s (obsolete) Orchid software,
uses this latter convention. Most of the time, you won’t have to worry about this,
as each image reduction software package will be internally consistent. However, if
you write down pixel positions determined from one package (e.g. IRAF and ds9),
and then wish to use these pixel positions in another package (e.g. the IDL Deep
software), you will have to think and translate the pixel positions.

Note that all pixel positions stored in the SCP databases use the IDL Deepsearch
convention! Although IRAF and the Deeplib software tries to be as internally consis-
tent as possible (and Deeplib performs the necessary translations when reading both
FITS images and the SCP databases), sometimes some painful by-hand translation
will be necessary when explicitly specifying pixel positions to anything other than the
IDL Deepsearch software.

-9-

Data Reduction for the Deepsearch

IRAF (1,1)
IDL/Deep (0,0)
Deeplib C/C++ (0,0)
Deeplib FORTRAN (1,1)Orchid (0,0)

Most reasonable,
 but least common
 definition of (0,0)!!

Figure 1.1: Conventions for the co-
ordinates of the lower left pixel for
different image reduction software
packages.

Data Types

For most of astronomy, it is generally most useful to think about the value for the
flux at each pixel as being a floating point number. Sometimes, images are stored on
disk as short integers (16-byte integers). This may be because the data is entirely
composed of integral pixel values in the range (-32768..32767) (those numbers which
can be represented by a 16-byte integer). Frequently raw data from telescopes fit this
description. Once data has been reduced, it usually no longer fits this description.
However, often there is no more than 16 bits of real information in the image. In this
case, the amount of disk space used by the images may be reduced by storing the
image as 16-bit integers and encoding in the header of the image the translation to
the full floating point value of each pixel. Most image packages handle the translation
automatically; you will almost never had to worry about this issue when reading an
image. Sometimes you will have to think about it when writing out images. (MORE
TO BE WRITTEN.)

1.4.3 Data Compression

Occasionally, you will come across what looks like a FITS file that you can’t read.
Frequently, what you have is a FITS file that has been compressed using one of a
number of different data compression algorithms. This is important for two reasons;
one, because you need to know the program to use to decompress the data. Two,
because there may have been information loss in the compression. Compression al-
gorithms that cause some information in the image to be lost are known as “lossy”
algorithms. You usually get more compression with a lossy algorithm then you do

-10-

Data Reduction for the Deepsearch

with a lossless algorithm. When performing careful reduction of data, it is almost
always better to find images which have not been through lossy compression.

Frequently, you can recognize the compression algorithm used on an image by the
extension on the image (the letters in the filename after the last period). Of course,
this requires that the person who named the file (who may have been you!) did it
correctly. Table 1.1 summarizes the most common types of compressed programs you
will run across.

File Extension Type of Compression Command to Decompress
.gz lossless gzip -d filename
.Z lossless gzip -d filename
.bz2 lossless bzip2 -d filename
.H lossy fdecompress filename
.nz lossy talk to Rob
.mz lossy talk to Rob

Table 1.1: Types of file compression frequently found for Deepsearch
FITS Images.

1.5 Running IRAF

Note: Although most of this manual will assume that you are using Deeplib, you may
need to use IRAF for a small number of steps. This section will tell you how to get
started running IRAF. In addition, it will give you some pointers at figuring out how
to do most of the reduction in IRAF, should you wish to do it that way.

IRAF is a general image reduction package that many of us find extremely mad-
dening, but which provides a vast array of tools useful for reducing astronomical
images (as well as other things).

To set yourself up in the first place to run IRAF, first make sure your path
is set up correctly. For many computers, this will mean adding /iraf/bin to your
path. (On the Deepsearch Suns, add /home/astro21/iraf/bin to your path. On the
Deepsearch PCs, add /home/lilys/iraf/bin to your path. (WARNING: these
may be out of date!)) Check first to make sure it isn’t already there. Once your
path is set up correctly, you need to create yourself an IRAF directory, and run
the mkiraf command. You can do that with these commands (given to the Unix
command line):

% cd ~

-11-

Data Reduction for the Deepsearch

% mkdir iraf

% cd iraf

% mkiraf

In order to actually run IRAF, you will find that things tend to work best if you first
open an xgterm with the command:

% xgterm -geometry 80x40 &

Move your mouse so that the newly opened xgterm window has focus, and then issue
the following commands to run IRAF:

% ds9 &

% cd ~/iraf

% cl

The first command runs the image display program (ds9) used by IRAF. If you already
have an ds9 running, you can skip this command. Once you are in IRAF, you will
see the IRAF prompt. This is a two letter prompt followed by a “greater than” sign
(>). Before doing anything else, issue the command:

cl> stty xgterm nlines=40

If you are running an xterm, you would use stty xterm instead. Note that it is very
important to give IRAF the correct number of nlines in an stty line. Without it, you
will have a very hard time reading help files and editing parameter files.

The tasks within IRAF are organized in packages. In order to use the tasks in a
package, you must first load that package. Some of the most common packages will
be loaded for you in various startup files that are run as you start IRAF. To load
another package, simply type its name. For instance, if you want to load the ccdred
package (which includes many useful tasks for basic image reduction of single-chip
cameras), you would type that command to IRAF:

cl> ccdred

cc>

Notice that the two characters of the IRAF prompt tell you what your current package
is. The IRAF command help lists the tasks and help topics available in the current
package. The command package will list which packages you have loaded. For more
information, do:

-12-

Data Reduction for the Deepsearch

cl> help package

The help command, of course, works with other IRAF commands. Use it early, use
it often. To exit the current package, use the command bye. If you are confused, keep
using bye until it gives you an error message; then you know you’re back to where
you started.

If at any time you hit CTRL-C to abort an IRAF task, or IRAF gets otherwise
confused, you should use the command

cl> flpr

repeatedly. This is pronounced “flipper”, and stands for “flush the process cache” or
something equally banal. If you don’t do it, IRAF might get in a confused state that
will cause further problems. It never hurts to do lots of flippers.

Many IRAF tasks have a huge number of parameters and options, which can be
specified on the command line. However, frequently it is easier to use the IRAF
parameter editor, an editor somewhat similar to vi, to specify all of your parameters.
To use the IRAF parameter editor, do:

cl> epar command

Use the arrow keys to move up and down from one parameter to the next. There
may be more than one page of parameters. When the cursor is positioned on the
line of a parameter you wish to edit, type the new value of the parameter. When
you are done, hit the colon (:) key, and type “wq” followed by a carriage return.
This saves the values of the parameters; they will have the same values the next time
you enter IRAF. Alternatively, instead of “:wq”, you can use the command “:go”
to immediately run the IRAF command with the parameters specified. The “:go”
method is usually the easiest way to run interactive IRAF commands.

To quit IRAF, use the command logout:

cl> logout

%

-13-

Data Reduction for the Deepsearch

1.6 Inspecting Images with IRAF

Header

The three most useful commands for sniffing image headers in IRAF are imheader,
hselect, and ccdlist. The command “imheader filename” tells you the size and
name of the image stored in file filename. To see the full header, try:

cl> imheader filename l+ | page

The “| page” at the end of the line tells IRAF to send the output through a pager
similar to Unix’s more. The “l+” tells IRAF to show the full header. (This is actu-
ally a shorthand version of editing the imheader parameters with epar and setting
“longheaders” to “yes”.)

The command hselect is useful when you need to see a small number of header
values from a large number of files. For instance, if you want a list of the OBJECT,
RA, and DEC fields from all of the FITS images in the current directory, you could
use the command:

cl> hselect *.fits $I,RA,DEC,OBJECT

(You may wish to add “| page” to the end of this command. You may alternatively
redirect the output to a text file by appending “> filename” to the end of the com-
mand line, just as in Unix.) The first parameter is the name of the files you wish to
show; the wildcard in this example selects all files whose names end in “.fits”. The
second parameter is the list of header keywords you wish to see. The “$I” tells IRAF
to print the filename of each file whose header keywords will be listed.

The command ccdlist is a part of the ccdred package. Try the command:

cl> ccdlist *.fits

(Remember to load the ccdred package first if you have not already.) If there are
any files whose names end in “.fits” in the current directory, you will see a line
of information for each one. This includes the name, size, and title of the image.
Additionally, among the last several sets of brackets, there will be information about
the filter of the image (usually something like “R” or “I”, although the name of
the filter may be longer), and information about which reduction steps IRAF has
performed on the image. When you have raw data, that latter set of brackets will
be empty. Once overscan correction is done, there will be an “O”. More letters will

-14-

Data Reduction for the Deepsearch

be added for subsequent steps: “T” for trim, “Z” for zero correction, and “F” for
flatfield correction. If you perform some of the steps outside of IRAF, unless those
tasks were written to interface with IRAF, IRAF won’t know about it. Always be
careful, keep track of what you are doing, and don’t trust IRAF to know everything
for you.

Display and Imexamine

The IRAF command display shows a FITS image in the ds9 window you opened
before first starting IRAF (see section 1.5). There are (at least) four image buffers in
ds9, which may be selected using the “Frame” menu in ds9. To display to the first of
these image buffers, use the IRAF command:

cl> display filename 1

Replace 1 with 2, 3, or 4 to use the other ds9 image buffers. This command uses
a default mapping of image pixel values to greyscale colors. There are two ways to
change this mapping. One is to hold down the right mouse button in the ds9 window
and drag the mouse around. (Play with it; you will learn how it works.) The other is
to use the various parameters to display, which may be edited with epar as usual.
The “Control Window Gadget” brings up a small control window that lets you adjust
the color map, zoom, and other properties of the display. The best way to learn about
this and other features of ds9 is simply to play with it. Note that the coordinates
displayed in ds9 use the IRAF convention (see Section 1.4.2). The first two values
are the X and Y coordinates of the pixel, and the third is the pixel value, or flux in
the pixel. Note that ds9 may only know about the limits of the display as passed
from IRAF (i.e. the highest pixel value mapped to black and the lowest pixel value
mapped to white). If the actual pixel value is outside the range understood by ds9,
a “+” or “-” will appear in addition to a number on the ds9 window. In general, it
is best to use the pixel values reported by ds9 for only quick qualitative diagnostic
purposes. There are other IRAF tasks for determining real pixel values and statistics.

The IRAF task imexamine is a general purpose task that lets you determine
statistics, perform quick aperture photometry, and otherwise inspect images. You
may type the command by itself on an IRAF line following a display command, e.g.:

cl> display lris0203.fits 1

cl> imexamine

After this, the ds9 window should have focus with a circular cursor. Positioning this
cursor over a region of interest and hitting various keys should give you information

-15-

Data Reduction for the Deepsearch

about the image. This information will usually appear in the terminal window in
which you are running IRAF, so it will frequently be necessary to shuffle windows in
order to see what is going on. The first thing to try is to hit the ? key. This gives
extensive help in the terminal window. When you are done looking at the help, hit
the q key (in the terminal window), and you should be returned to the ds9 window.

The “m” key, pressed while the ds9 window has focus, reports statistics (mean,
standard deviation, etc.) on a local region of the image. The text appears in the
window in which you are running IRAF, but focus is returned immediately to the
ds9 window. On an image which has been fully reduced, hitting the “m” key over
a region of no stars should give you an estimate of the sky brightness and sky noise
(see Section 1.4.2). To change the size of the box used for statistics, you have to
change the values of the “ncstat” and “nrstat” variables. To do this, press the colon
key while the ds9 window has focus. This will return focus to the IRAF terminal
window. Type the name of the variable, and its value, followed by a carriage return.
For example:

: ncstat 5

Focus will return to the ds9 window, and next time you hit “m” the new value will
be in effect.

There is a huge number of variables, which affect different parts of imexamine,
which may be set similarly. There are also a huge number of commands that give you
various other information via imexamine. Reading the help information (by hitting
the ? key) is the best way to learn about all of it. A couple other very useful
commands in addition to the “m” statistics command are “s” (to get a surface plot
in yet another window of the local area), “v” (plot a one dimensional “vector” or
cut in a window; it will prompt you to indicate the other end of the vector), and “a”
(perform aperture photometry, a complicated topic even in the simplified environment
of imexamine).

Play with imexamine, to get a feeling for what it can do.

Greyscale Control in Display

By default, when you use display to display an image, IRAF picks what it think
is a reasonable range for the greyscale, and usually it does a good job. However,
sometimes you want to see a different range. You can do this by changing some
parameters of display, either on the command line, or using epar. Display follows
these rules for determining the greyscale mapping:

1. If the parameter zscale is set to “yes”, then IRAF automatically picks a range

-16-

Data Reduction for the Deepsearch

for the greyscale based on the mean and standard deviation of the image.

2. If zscale is “no” and zrange is “yes”, then IRAF maps the lowest pixel in the
image to black, and the highest pixel in the image to white. (Using the right
mouse button in display, you can cycle the colors to flip this around.)

3. If zscale and zrange are both “no”, then IRAF maps the pixel value z1 to
black and z2 to white.

It is frequently easiest to edit all these parameters with epar. If you want to set them
on the command line, you could specify that the greyscale should stretch the colors
between pixel values of 0 and 1000 with the following command:

cl> display filename 1 zscale- zrange- z1=0 z2=1000

Seeing the Whole Bloody Image

You may have noticed when displaying a large image that the whole image doesn’t
get displayed with the IRAF task display. Look at the edge of what is shown in ds9;
use the panner to make sure you are looking at the very edge. The pixel coordinates
at the edge may not be the minimum (1) or maximum pixel coordinates of the image
as shown by imheader. There are two ways around this.

Iraf uses a “device” called “stdimage” to determine the capabilities of the ds9
display. By default, stdimage is “imt2048”. This is capable of showing a 2048×2048
image. If your image is bigger than that, the central 2048×2048 section of the image
will be displayed. To display a larger image, if you have the memory available in your
computer, you can tell IRAF to use the “imt4096” device (capable of showing up to
4096×4096 images):

cl> set stdimage=imt4096

After that, run display.

The second way around it is to just display a corner of the image. Suppose you
want to look at the pixels all the way to the edge on the lower left of the image. You
can display just a section of the image:

cl> display filename[1:1024,1:1024] 1

-17-

Data Reduction for the Deepsearch

Imstat

The iraf task imstat is a very useful tool that performs statistics on regions of images.
It is very simple to use; the command

cl> imstat lris0203.fits

will return the mean, standard deviation, and other information about the image
lris0203.fits. If you want to get the statistics of a region of an image, the syntax is
(for example)

cl> imstat lris0203.fits[900:1100,900:1100]

This will return the mean and standard deviation for the specified region of the image
201×201 pixels in size. What imstat does is nearly identical to what the “m” key in
imexamine does, but it is easier to control. You can, with ds9, locate a small region
of the sky that you know contains no objects (and hence only sky background).
Write this region down. You can use imstat before and after a given step of the
data reduction, to track how your sky noise (“STDEV”, the standard deviation) was
affected by that step. Explicitly specifying the same region before and after insures
that you are looking at the same only-sky region of the image, whereas with ds9
and imexamine you have to have good aim. Note that if you perform a step such as
trimming that may cut out part of the image or otherwise move pixels, you may not
want to look at exactly the same range of pixels before and after the reduction step!
As always, pay attention to what you are doing, and display and inspect images as
often as possible.

1.7 Deeplib

Deeplib is two things:

1. A C++ library written (so far mostly) by Rob Knop to allow reading/writing
of FITS files as well as interaction with the Deepsearch database.

2. A set of standalone Unix programs, linked with the Deeplib C++ library, to do
image processing tasks.

Deeplib is currently very much under construction, and the library is not available
for general use. However, a handful of the individual programs are available for general
use.

-18-

Data Reduction for the Deepsearch

1.7.1 Setting up Deeplib

Deeplib may be set up for your environment already. If not, try adding /usr/local/deeplib
to your path. At that point, the Deeplib utilities should be available. By convention,
Deeplib programs give a brief help message if you run them with the single argument
“--help”.

1.7.2 Inspecting Images with Deeplib

The Deeplib program “imheader” will list the entire header of an image. As this is a
standard Unix command line utility, you can do fun things by piping the results into
less, grep, and so forth. If you want to select a small number of keywords from a
large number of utilities, try the Deeplib program “hselect”.

Deeplib’s display program is currently called “testfitswidget”. Run this with
the name of the file you wish to view.

1.8 Deep IDL

Before doing anything with IDL, and with the Deep IDL software in particular, take
a look at the documentation for the Deep IDL software on the web, which may or
may not be at

http://panisse.lbl.gov/collab/documentation/

In particular, read the introductory section on setting up and living within the IDL
environment:

http://panisse.lbl.gov/collab/documentation/settingup.html

1.8.1 Inspecting Images with Deep IDL

TBW; in the mean time, try “dlib,’imagezoomer’”.

Reading FITS Files

In IDL, you can read in any FITS file with the command:

-19-

Data Reduction for the Deepsearch

IDL> im=readfits("filename",hdr)

This will read the image data into the variable “im” (as a two dimensional array),
and the header into the variable “hdr” (as an array of strings. Note that there are
better ways to read images that are in the Deepsearch database, but that will be
discussed later. (ROB, FIX THIS.)

Sky

The Deep IDL program sky measures the level and noise in the sky background of
an image. It uses an algorithm that attempts to reject any objects (stars, galaxies,
cosmic rays, and other “bright” pixels), and then measures the sky from the rest of
the image. You can run it with the command

IDL> sky,im,sky,noise

It will print the “average” sky level in the image represented by the two-dimensional
array im, as well as the noise in the sky level (“sigma”). The variable sky will be
loaded with the sky level, and the variable noise will be loaded with the value of the
sky noise. Of course, you may substitute your own variable names for the last two
parameters.

The sky program can be useful for determining whether or not a given data
reduction step measurably reduced the sky noise in an image. You may also determine
this by explicitly performing statistics on a region of the image which has no objects,
using a program such as Deeplib’s testfitswidget.

zimage and imagezoomer

This section is still to be written, but you may be able to figure it out for yourself. Try
reading an image into image variable im1, and then issuing the following command:

IDL> zimage,im1

Was that exciting? When you are done, exit the window, and try:

IDL> zimage,im1[100:300,100:300]

Getting the hang of it? Try playing with the zero, span, and redraw gadgets in
zimage.

-20-

Data Reduction for the Deepsearch

Chapter 2

Preliminary Image Reduction

2.1 Anatomy of an Image

A raw image from a telescope is an array of pixels (see Section 1.4.2). Each pixel
in the image file corresponds to a physical pixel on the CCD chip used to take the
image. However, there are usually additional pixels in raw data that are for cali-
bration purposes, and which do not correspond to physical CCD pixels. Figure 2.1
shows a sample single-amplifier image. If a the CCD chip used to obtain the image
was 2048×2048 pixels in size, then the “Image Data” portion of the image will be
2048×2048 pixels, even though the size of the image data in the raw data file may be
2080×2048 pixels. The additional pixels usually represent what is called an overscan
region. These pixels measure the zero-offset, or bias, value for the image. Because
these pixels do not correspond to physical CCD pixels, no light hit them; in a reduced
data frame, they should have a value of 0 (although in reality they will have by then
been trimmed out). The bias value, as measured by the overscan region, must be
subtracted from the entire image (see Section 2.3).

Figure 2.1 shows the simplest image, which is the sort most easily reduced in
IRAF. In this example, the CCD only used one amplifier. Real CCDs sometimes use
more than one amplifier, and each amplifier will have a slightly different bias (and
gain), requiring (among other things) a different overscan region for each amplifier.
The location of this overscan region will vary depending on the instrument used to
obtain the data. Frequently, you can figure out where to find the overscan regions,
and which portions of the image they apply to, by perusing the headers of the images,
or reading the manual for the observatory and instrument in question. Sometimes,
you have to figure it out yourself, using tools such as imexamine (see Section 1.6).
Normally, it will be easy to tell where one region ends and another region begins by
looking at the image, as there will be a discontinuity in the background level due
to differences in the bias and gain of the amplifiers. Figure 2.2 shows a sample two-

-21-

Data Reduction for the Deepsearch

Overscan Region

Image Data

Figure 2.1: Example single amplifier im-
age, showing the data section and the over-
scan region.

amplifier image, similar to those produced by the LRIS camera on the Keck telescope,
and Figure 2.3 shows a sample four-amplifier image, similar to those produced by the
ARCON system at the CTIO observatory in Chile.

Note that even though these images indicate specific positions for the overscan
region, each instrument and observatory may place the overscan region in a different
places. For instance, the overscan region of a two amplifier image might be on the
right, as show in Figure 2.2, but it could just as easily be on the left, or in the middle
of the two images. (In the latter case, it would then be very important to be extremely
careful when trimming out the overscan region, so as not to distort the astrometry of
the image across the amplifier boundary.) An overscan region may also be at the top
of bottom of an image, instead of the left or right. Finally, some images won’t even
have an overscan region! Note also that this structure applies to all sorts of images,
including zero and domeflat images, not just those images that show a region of the
sky.

2.2 Multiple Chips

Many modern detectors, including the Mosaic on the 4m telescope in Chile and the
MiniMosaic camera used at WIYN, have multiple CCD chips that take data simul-
taneously. The conceptually simplest way to reduce data from these telescopes is

-22-

Data Reduction for the Deepsearch

Region read
by Amplifier 2

Overscan Region
for Amplifier 1

Image Data

Region read
by Amplifier 1

Overscan Region

Overscan Region
for Amplifier 2

Figure 2.2: Example two amplifier image.

to treat each CCD as a separate instrument. In other words, you must build sepa-
rate calibration images (zero, flatfield, etc.) for the data from each chip. There are
some problems with this, however, and it can lead to challenges with photometric
calibration later. The Deeplib tool “pclipflat” (and the parallel processing version
“parpclipflat”) allows you to simultaneously build zero frames (see Section 2.6)
and flatfields (see Chapter 3) for all chips of a multi-chip camera; they will be nor-
malized to be consistent with each other. Thereafter, you can reduce the data as if
each chip were a different camera.

There are two common ways which data from multiple chips comes packaged.
One scheme is to have the data come as a FITS image stack. Deeplib cannot han-
dle image stacks, so you will need to use IRAF to split the stack. In IRAF, type
mscred to get into the right package, and then epar splitmsc to set up the pa-
rameters for the command “splitmsc”. This will split out a Mosaic image into
individual files filename 0.fits, filename 1.fits, filename 2.fits, etc. Usually,
filename 0.fits will be much shorter than the other files (use “ls -l” to check
this) and will only contain a header. filename 1.fits will have the data for the first
chip (or amplifier), and so forth. At this point, you may proceed with the reduction
using Deeplib on these simple FITS images.

-23-

Data Reduction for the Deepsearch

Image Data: Amp 4Image Data: Amp 3

Image Data: Amp 2Image Data: Amp 1

Overscan 4

Overscan 1 Overscan 2

Overscan 3

Figure 2.3: Example four amplifier image.

With some cameras, not only will separate chips, but separate amplifiers will be
split out into individual files. In this case, you will later need to “knit” the files for
individual amplifiers of a single chip back together; see Section 2.5 below.

The second way that multi-chip data may come packaged is in a large uber-image
which has the data from the individual chips laid out next to each other; the TNG
telescope returns data in this format. In this case, you should use the Deeplib utility
imclip to extract the data for each chip into individual files. (When you do this,
make sure to keep the overscan region for a chip with that chip’s data, because you
will need it below!)

Occasionally, there are also IRAF tools that will simultaneously build and ap-
ply multi-chip flatfields. While they will tend to be easier to use than Deeplib’s
pclipflat, they also can be a little challenging to configure for any instrument other
than the specific one for which they were written. MOSRED is an IRAF package
designed for the BTC, and MSCRED is an IRAF package designed for the Mosaic
and MiniMos cameras. In the former case, a version of ccdproc that understands the
BTC filename conventions operates on multiple files (one for each chip) at a time.
In the latter case, the raw data from the telescope actually comes in files which are
image stacks, as opposed to the simple FITS image discussed in this document.

If you’ve built separate flats for different chips (either by doing them one at a time,
or by using Deeplib’s pclipflat), make sure to apply the flatfield for chip 1 only to
that data which comes from chip 1, and so forth. Flatfields are discussed in greater

-24-

Data Reduction for the Deepsearch

depth in Chapter 3. The same concern applies to zero images (Section /refsec:zero.)

2.3 Overscan and Trim Correction

Overscan correction refers to the process of subtracting the bias of an image, as
measured in its overscan region (see Section 2.1). Trim correction (sometimes called
just “trimming”) refers to clipping out those pixels on an image you wish to keep,
usually to omit the overscan region after overscan has been corrected.

2.3.1 Overscan and Trim with Deeplib

Deeplib includes a program “overscan” which will do most of what you need for
overscan correction. Run “overscan --help” for usage information. If you have a
single image, a sample command line might look something like

% overscan image001.fits image001 new.fits -ov 2049 2079 \
-kw OVERSCAN -p -pd /XSERV

Substitute the right overscan region for 2049 2079. If the fit to the data does not
look good, you may need to use the -o, -sp, or even -nf keywords on this data set.
By default, overscan assumes that the overscan is done along the rows of the image,
i.e. the overscan region is at the left edge or right edge (or down the middle with
some multi-chip cameras). If the overscan region is actually at the top of bottom (or
across the middle), use the -c keyword to tell overscan this.

When you have a large quantity of data to apply the correction to, it will usually
be most convenient to write a simple shell or Perl script to run overscan on each
image individually. (If you are really good, you can just do this from the command
line with tcsh’s “foreach” command.) Before running through a whole set of data
automatically, you should carefully run it on a few images from that data set by hand,
inspecting the results to verify that things are working well. In particular, use the
PLOT parameter to verify that you are getting a good fit to the overscan region. When
you use PLOT, you will need either to specify a plot device, either when prompted or
with the PLOTDEV parameter. This is a standard PGPLOT device name. If that
means nothing to you, just specify either “/XWIN” or “/XSERV” and things should
work for you.

The simplest way to construct a shell script is to list the files you want into a
text file (e.g. “ls *.fits > dooverscan.com”). Edit that file with emacs, and use
the search-and-replace, rectangular cut and paste, and keyboard macro functions to

-25-

Data Reduction for the Deepsearch

build up a series of commands. Save the text file, and then from the command line
run

% source dooverscan.com

to run all of the commands in the text file. This is a generally useful procedure for
doing a whole lot of repetitive, similar commands, and is best for people who are not
comfortable writing perl scripts with foreach loops to handle the task.

You can perform trimming with the Deeplib program “imclip”. Its operation
should be obvious. Note that if you have to piece together an image with the overscan
region in the center of the image (e.g. the image in Figure 2.3), you must be very
careful to get your trim region exactly right. Normally, if you trim off an extra row or
column at the edge of an image, it doesn’t matter; however, if you trim off a column
or row in the middle of the image, it will screw up the image (all the stars and galaxies
to the right of a missing column will be incorrectly offset one column to the left, for
example). See Section 2.5 below for information about knitting together individual
amplifiers.

Use your favorite image viewer (e.g. the Deeplib program “testfitswidget”) to
verify that you know the proper overscan regions and the regions of the image to
which they apply, and that you know the proper trim region. Assume nothing!
Don’t assume that it will be the same for a given detector and telescope combination
from run to run, because it may change. Don’t assume even that the header is correct
(although the header can be useful in pointing you where to look, and in clarifying
ambiguities). Always look at the image and verify for yourself that you know you are
doing the right thing.

Choosing the Overscan Region

You may be able to find hints as to where to look for the overscan region by looking
at the image’s header. Look for the header keyword BIASSEC, or other keywords with
promising-looking comments. In particular, if there is what appears to be an overscan
strip on three or four sides of the image, the header can hopefully tell you which is
the readout direction of the chip and which is the real overscan region.

It is worth taking care when selecting that portion of the overscan region you will
use for estimating bias values. Don’t always fully trust the header; verify what it
says by looking at the image with an image viewer. Ideally, you can use all of the
pixels on the overscan region in each row for this purpose. However, look closely at
the overscan region to make sure that it doesn’t get brighter toward one or the other
edge. If they do, only use the consistent and reliable fraction of the overscan region
for your overscan correction.

-26-

Data Reduction for the Deepsearch

Multiple Amplifiers

If you are reducing data from a CCD that used two or four amplifiers, be very careful
to apply the correct overscan region to the correct portions of the image. This may be
very difficult to do in IRAF, unless you’re using mscred and an image stack it knows
about. The Deeplib utility “overscan” does let you specify explicitly which portion
of the image you wish to work on each time you run the program; run “overscan
--help” for more information. If you do have data with multiple-amplifier chips, you
will need to run overscan on the image multiple times, once for each amplifier. For
example, suppose that you have an image which looks like that in Figure 2.3. The
commands you might use to apply the overscan correction to this image might be:

% overscan image001.fits image001 new.fits -ov 1024 1063 \
-i 0 1023 0 1023 -kw OVERSCAN

% overscan image001 new.fits image001 new.fits -ov 1024 1063 \
-i 0 1023 1024 2047

% overscan image001 new.fits image001 new.fits -ov 1064 1103 \
-i 1104 2127 0 1023

% overscan image001 new.fits image001 new.fits -ov 1064 1103 \
-i 1104 2127 1024 2047

Notice that while image001.fits is used as the input image for the first command,
image001 new.fits is used for subsequent images. If you think about this for a
moment, it should be obvious; if not, discuss it with people until it becomes obvious.

With this image, you would then have to use imclip twice and then knit the
image back together (Section refsec:knit). If the overscan regions are at the left and
right edges of the images, then a single imclip would suffice.

Of course, you should very carefully use testfitsimage to find exactly the borders
of the overcan regions and the image regions which correspond to each amplifier before
running any of this.

Verifying What You’ve Done

After performing an overscan correction on a set of images, you should inspect these
images to make sure that the overscan correction worked correctly. Use display and
imexamine to do this (see Section 1.6). Look for the following things:

• The overscan region itself should be zero. (Note that this won’t be true if you
used Deeplib to overscan correct a subset of the image that didn’t include the

-27-

Data Reduction for the Deepsearch

overscan region, or if datasec in IRAF’s ccdproc didn’t include the overscan
region.) If you use “m” in imexamine to get the statistics of the overscan region,
it should average to zero. The average should be well within σ of 0, where σ
is the standard deviation reported by imexamine. (Ideally, it should be within
1–2 times σ/

√
N of 0, where N is the number of points for which “m” gives you

statistics.)

• The sky level should have gone down by the amount of the overscan. Look at a
given region of background pixels before and after the overscan; make sure that
the average value has gone down by the right amount. On a multiple-amplifier
image, verify this for every amplifier. (It is very easy to leave out one or more
amplifiers, or overcorrect one of the amplifiers, on such an image if you are not
careful when constructing your list of overscan commands to run.)

• If you included any zero images in the set of images to which you applied
overscan correction, the image data in the zero images should also be close to
zero. (This will not necessarily be the case with dark images.)

• Make sure that you haven’t introduced any new structure to the image. New
bright or dark lines along the rows, or horizontal “ripples,” which weren’t
present prior to the overscan correction, are some possible indicators that there
was a problem with your overscan correction.

If you’ve run overscan on a large number of images, generally you only need to
perform these verifications on a few of them (two or three). If it worked on those,
chances are it worked on all of the images. Only the extremely careful would look at
every single image after the overscan step to verify that they all worked properly. If
you do only choose two or three to look at, don’t just choose the first two or three;
select them randomly from the list of images to which you applied the correction.

Trim Correction

The trim correction is very simple: once you’re done with them, you cut off calibration
and “garbage” pixels, so that the image only contains useful data. Sometimes, you will
want to cut off more than just the overscan region. For some telescopes (including
the LRIS imager on the Keck telescope), the field of view of the instrument and
telescope is actually smaller than the area covered by the CCD. In this case, there
will be some obscured or vignetted pixels on the edge of the field which contain no
useful information. Sometimes, for one reason or another, there is a bright stripe at
the edge of an image. When you are trimming an image, it’s usually best to remove
this sort of garbage in addition to the overscan region. You may use testfitswidget
to figure out what the best trim region is. The Deeplib task imclip will actually cut
out the images.

-28-

Data Reduction for the Deepsearch

There are only two cases in which you must be careful when performing trim
corrections:

1. You must apply exactly the same trim correction to every image of a set. In
particular, you must apply the same trim correction to the images that will be
used to build a flatfield (see Chapter 3) as you do to each image to which you will
apply that flatfield. Otherwise, the flatfield will not be properly aligned with
the other images. While your reduction procedure may appear to be successful,
your final images will not be properly reduced, and will have much higher noise
than is optimum.

2. If the overscan region is in the middle of the image (as is the case in Figure
2.3), you must be careful to trim out all of and only the overscan region from
the middle of the image. Columns of pixels which were adjacent on the physical
CCD that obtained the data must be adjacent in your final, reduced image, or
your ability to measure relative positions of objects will be compromised, and
photometry on objects near the “seam” will be incorrect.

2.4 Gain Multiplication

At this point, you should mulitple all images by the gain of the image. Previous ver-
sions of these instructions had you doing this at the end. However, because different
amplifiers will have different gains in multiple-chip images, it helps to reduce that
difference as much as possible before proceeding with the reduction.

The “gain” of the image, as defined here, is the number of photoelectrons per
“count” in the image. “Counts” are the raw pixel values in the image as you have them
right now. Photoelectrons are what was actually measured. Typical astronomical
images have gains in the range 1–10. You can usually find the gain somewhere in
the header— but be careful that you’re finding a e-/count (or e-/ADU, ADU being
“Analog to Digital Units”, which is just counts) ratio, and not a count/e- ratio!

The step of multiplying an image by the gain is not considered a part of standard
data reduction by most data reduction procedures. You will see this listed as some-
thing you must do if you find another text or set of instructions for reducing data.
What’s more, some people (probably including even many in the SCP) will consider
it loony that we multiply all of our images by the gain. Truth to be told, that we
have historically done this does create some rather severe problems. However, there
are two very convincing reasons to do it. Photoeletrons are what you have really
measured. As such, statistical noise properties and so forth should make more sense
if you consider data in units of photoelectrons, and the numbers in the image are
more directly related to something physically meaningful. The primary reason to do

-29-

Data Reduction for the Deepsearch

this, however, is that a lot of the Deepsearch software assumes all images loaded into
the deepsearch database are gain multiplied. . . so you gotta do it. This condition
may be relaxed in the future (and indeed it will have to be to solve some problems
we currently have), but it will take Rob a lot of work before it may be relaxed.

The Deeplib task mulconst is what you need to perform gain multiplcation; it’s
operation is obvious. (Run “mulconst --help” to see the calling sequence.) For
multiple amplifier images, be very careful to use the right gain for the right region of
the image, and to limit each mulconst command to the proper region of the image.
(Similarly, for multiple-chip cameras, make sure you use the right gain for the right
amplifier of the right chip. CTIO’s Mosaic camera, for instance, has 16 different gains
for its 8 chips.)

Sometimes, the gain keywords in the header are wrong. E.g., the VLT has the
wrong chip numbers associated with what seem to be right gains. Tread with caution,
and make sure you’re doing the right thing. With a mosaic stack (e..g WIYN MiniMos
ro CTIO Mosaic), you can use the IRAF “mscfindgain” task on a pair of raw domeflats
and a pair of zero images to measure the gain for all of the chips.

Generally, with multiple amplifier chips (such as the VLT), in a long-exposure
image you will clearly see the different regions or quandrants of the chip; the sky
will be brighter in one quadrant, dimmer in another. After gain multiplication, those
differences should mostly go away (although they will probably still be visible; flat-
fielding will take care of the rest). If the differences do not substantially reduce, or
if they get worse, then chances are that you used the wrong gain for one or more
regions of the image.

2.5 Knitting Images Back Together

Data which all comes from one chip generally should be saved as a single contiguous
image. Sometimes, at this point, you will have separate FITS images for individual
amplifers. This will be the case for an image like that in Figure reffig:fourampimage
after the trim step, and is the case for some image stacks such as CTIO Mosaic and
WIYN MiniMos. After the gain multiplication, you should knit the images back
together. You do this with the Deeplib command knitimages; run “knitimages
--help” for documentation. Use of this command should be obvious. Make sure you
knit the images together in the right order! A good thing to check is to look at some
of the images, and look for an object that straddles the “seam”. Make sure that it
does not look discontinuous. (There may be a slight flux discontinuity due to residual
gain differences, which won’t be corrected until the flatfielding step. However, there
should be no morphological discontinuities.)

One of the trickiest things here is keeping track of your filenames before and after

-30-

Data Reduction for the Deepsearch

knitting. For instance, with the Mosaic camera, before knitting for each exposure
you have 16 separate files files filename 1.fits through filename 16.fits. After
knitting, if you use a zero-offset convention, you will only have filename 0.fits

through filename 7.fits. You have to be very careful to do this in an order such
that you don’t overwrite an individual amplifer image while it is still needed; you
should also be careful in cleaning up leftover images which are no longer useful, if you
are in fact deleting intermediate stage images.

You may find it safer to use a different naming convention for images post-knitting.
For instance, with the Mosaic camera, you could name them filename a.fits through
filename h.fits. This will make it very clear to you which images are and aren’t
knit. (This convention also has the advantage of being similar to a convention you
will use for filenames when loading the images into the database.)

2.6 Zero and Dark Subtraction

The purpose of Zero (or Bias) subtraction is to subtract any pixel-to-pixel structure
in the bias of an image. Overscan correction (Section 2.3 takes care of the gross bias
of the image. For most modern CCDs, the noise due to zero correction (σz from
Section 1.4.2) is so small compared to other sources of noise that the zero correction
is usually relatively unimportant. (The WIYN MiniMos camera seems to have ∼ 30
counts left over in its zero images.) However, it’s also relatively easy, so usually you
do it.

The first task is to create a “combined zero” image. You may do this by making
a list of your zero calibration frames (explicitly taken as such by the observer at the
telescope) and running that list through Deeplib’s pclipflat. It is very important
that you use the parameter “SCALEBY none” when using pclipflat to create a Zero
frame! A sample command line might look like:

% pclipflat zeros.lis Zero.fts -sc none -ls 3 -hs 3

Here, “zeros.lis” is a text file which lists, one per line, the files to be combined into
output zero image Zero.fts. These files should be the files which have already been
overscan corrected, trimmed, and gain multiplied. There must be no spaces, even at
the end of the line or the end of the file, in this list file! That is the most common
source of “image not found” errors which seem to make no sense whatsoever.

If you have multiple chips, the command line would look like:

% pclipflat zeros.lis Zero @chip@.fts -ch a b c d e f g h \
-ls 3 -hs 3

-31-

Data Reduction for the Deepsearch

Here, after the -ch parameter are the parts of the filename that are different from
one chip to the next. These might be numbers rather than letters, depending on the
data files you have and what you did at the knitting stage if any. One output file will
be written for each chip, with the @chip@ in the output filename replaced with the
appropriate string in the list after the -ch parameter. The file zeros.lis must list
the filenames, also with @chip@ in place of the “chip” part of the filename, e.g.:

image001 @chip@.fits

image002 @chip@.fits

image003 @chip@.fits

...

In this case, image001 a.fits is the first zero image for the first chip, image001 b.fits

is the first zero image for the second chip, etc.

The -p, -ls, and -hs parameters control the “pclipping” algorithm used in the
combination. This is disucssed at greater length in flatfields chapter, Chapter 3.
Choosing the right values for these paramters requires understanding the algorithms.
However, in most cases, when you are combining 7 or more images, the values listed
on this command line are right for a zero image. The -sc none parameter tells
pclipflat not to scale the images before combining them. Scaling is necessary for
flatfields, but must not be done for zero images.

A zero image should usually look pretty boring, and they should all more or less
look the same. If your combined zero looks a lot different from most of the individual
zeros that went into it, you have problems.

Once you’ve created a master zero image for one night’s worth of data, you sub-
tract it from every other image taken that night. Subtract the zero image from the
other images which have already been overscan corrected, trimmed, and gain multi-
plied. The Deeplib program imarith is a quick and simple way to subtract images.
On multi-chip cameras, make sure to subtract the right zero image from each image!
imarith does not have any sort of “@chip@” support, and must be run separately for
each individual chip of each individual image.

CCDs also have what is called “dark current.” This is the rate at which charge
(basically, false signal) accumulates in the pixel even when no photons are falling on
it. For most modern CCDs used on the ground (with the notable exception of that
on the NEAT telescope), dark current is so much lower than sky background that it
is generally ignored. (ROB, WRITE MORE ABOUT DARK SUBTRACTION?)

-32-

Data Reduction for the Deepsearch

2.6.1 Evaluating Zero and Dark Correction

Once you have performed zero and/or dark correction, you should evaluate your
images to make sure that everything worked properly. The first step is to just look
at some (or all) of the corrected images to make sure that you introduced no gross
artifacts (see Section 1.6). Next, you should make sure that you have not adversely
affected the sky noise of your image (see Sections 1.6 and 1.8.1). The sky noise should
either be approximately the same (if, as is the case with most ground based CCDs,
the zero correction is insignificant), or lower (if, as is the case with NEAT, dark
correction is an important step of the data reduction).

-33-

Data Reduction for the Deepsearch

Chapter 3

Flatfields

3.1 General Introduction

Flatfielding is often the final sten in standard data reduction. Sometimes you will
need also to do fringe correction (see Chapter 4). For the Deepsearch, there is a
whole bunch of additional foo-faa (Chapter 5) you must do once the images are fully
cleaned (reduced).

3.1.1 Why Flatfield

Because each pixel of a CCD camera is not precisely like its neighbor, the light
sensitivity of each pixel will differ. This variation in the pixel response is typically on
the order of a few percent, but can be as high as ten or so percent. This can have a
significant effect on the analysis of the image. This pixel-to-pixel variation results from
the not quite perfect manufacturing process, tiny dust grains and other imperfections.
Astronomers remove this effect by creating a “flat” image of a uniformly lit field, and
dividing it into the object image.

Because the pixels may have slightly differing color sensitivity, you have to build
a separate flatfield for each filter. If you took images during the night through the V,
R, and I bands, then you will need three flatfields, one for each of the filters.

3.1.2 Types of Flats

There are several methods of creating a “flat” field. Which one you use, depends on
your application, including what kind of photometry you are interested and so forth.

-34-

Data Reduction for the Deepsearch

Dome Flats

Many astronomers image a brightly lit screen inside the telescope dome. Typically
used are bright tungsten lamps, often placed at the end of the telescope, behind the
secondary mirror. Sometimes lamps on the dome floor or along the wall are used to
illuminate the screen. Since the light source is so close, the telescope is completely
out of focus but the light from the dome follows the same optical path as focused
starlight. The result is that the ccd is wholly illuminated (flat).

Often one can control the brightness of the lamps by means of a rheostat so that
exposure times are short, about 1 or 2 to 15 or so seconds, for a light level roughly
“half welldepth”, or half the level at which the detector saturates. This means that
for a given filter, the time integration is kept constant. A series of 10 or so dome
flats per filter are taken in the afternoon by the now-awake observer, usually before
dinner.

One problem with dome flats is that they are redder than the night sky, since the
lights used are tungsten lamps. Thus, many observers also use twilight flats.

Twilight Flats

Twilight flats are images of the twilight sky. These are typically obtained in the
narrow time window between sunset and and the end of twilight, though they can
also be taken just before sunrise (but this is when the observer is practically comatose
after a long night’s observing!). The telescope is pointed about 15 degrees from the
zenith, toward the east (opposite the sun’s position). A series of exposures through
each filter is taken, just like with dome flats. However, since the sky’s brightness is
not constant (it’s getting darker), one has to continuously increase the exposure time
to get the same level of illumination on the CCD. While one tries for a light level
close to half welldepth, frequently you settle for levels as dim as half this bright, or
as bright as 50% brighter. In addition, between exposures it is wise to dither the
telescope. Dithering requires moving the telescope by several arcseconds, and is done
to avoid putting the same star on one pixel. Details are covered below in building a
flat. Twilight flats, like the dome flat, are also not the same color as the night sky.

Sky Flats

“Super flats” are where the object images themselves are used to create a sky flat.
Object images tend to have long exposures, and during these long exposures they
will accumulate a substantial number of counts from the sky background. These
counts may be used as flatfields in the same manner as twilight flats. They have

-35-

Data Reduction for the Deepsearch

the advantage that you are directly measuring your flatfield image from what is
contributing most of the light to the images; as such, if you have enough images
to make a good superflat, often this will provide the best possible flatfield correction.

Which form of flatfield you use depends on the data in question. Sometimes
there aren’t any twilight flats, or there aren’t good enough twilight flats, and you
must settle for domeflats. Sometimes there are different gradients in the night-sky
images (e.g. due to a nearby moon), making construction of a superflat difficult or
impossible. If you are able to make a good superflat, that is generally the best sort of
flatfield to use. Sometimes you use two different sorts of flatfields on the same image,
as discussed in Section 3.5.2 below.

3.2 Building a Flat

Generic Flat Recipe

The first step toward building a flat is to perform any overscan, trim, zero subtraction,
and dark subtraction steps (see previous chapters) on each flatfield image. (Note that
in the case of super flats, even your target images count as flatfield images!) The next
step is to combine the individual flats into one final flatfield image– one for each filter.
The simplest way to do this is to take the median of all the images; in practice, usually
you use a more sophisticated procedure (read on). The result should be a smooth
looking, “flat” image. In theory, the average count value across the CCD would
be constant. In practice there may be a gradient across the chip, caused by uneven
illumination (possible for both dome and twilight flats) either due to lamp placement
(dome flats), or to instrumental effects, unwanted objects like stars and cosmic ray
hits. So in practice the final flat is made by medianing after pixel rejection.

Now you see why the telescope could be dithered between exposures. . . if you
don’t, a star in your twilight flat will fall on the same pixels in multiple images,
meaning either that you have to rejejct those pixels from a lot of images, or (worse)
that you will not have enough images where those pixels are “clean” to perform a
satisfactory rejection.

3.2.1 Bad Pixel/Object Rejection

Median

The easy way to get rid of bad objects (e.g. unwanted stars, cosmic rays) is to take
the median of a number of images. Since the median is the mid-value point of a

-36-

Data Reduction for the Deepsearch

sequence of numbers, the highest and lowest values will be rejected. The remaining
value will be the median.

[picture of a bunch of ccd pixels with a line joining the same pixel along each ccd]

When there are many images or pixels or numbers (> 10 or so), a simple median
may be sufficient, at least for dome flats. However, due to observing constraints, the
number of flat fields available is often small, more like 7 to 10 per filter, so additional
cuts are used prior to taking the actual median so that a very high value or very low
pixel value don’t skew the resulting median. Even with superflats, where you may
have a large number, it is advantageous to use a more sophisiticated algorithm to
avoid biasing your median. Examples of bad things you don’t want to include are:
cosmic ray hits, hot pixels, stars, bad columns. This is why one dithers the telescope
between flatfield exposures: so that if there is a star on a given pixel in one image, it
won’t be on that pixel in all the other images, thus allowing it to be rejected with a
median.

Some of the algorithms used are pclipping, minmax rejection, avsigclip. In IRAF,
these are selected in “flatcombine” or “combine” procedures. The primary algorithm,
and the one implemented by the Deeplib routine pclipflat (which is what is recom-
mended for buildling flatfields), is pclipping.

3.2.2 P-Clip Rejection

Reject pixels using a sigma based on percentiles. This algorithm looks at the dis-
tribution of the values in one pixel across all images being combined, and from that
distribution tries to determine a “noise” (σ) level, and then rejects all images whose
value in that pixel is more than a certain number times σ from the median.

Figure 3.1 demonstrates the pclip algorithm. All of the values of a given pixel
on the images to be combined are listed, and sorted. A median (or mode) values is
chosen as a “center” value. (The median value, by definition, will be at the center of
this list, while the mode may not be.) The pclip parameter tells the algorithm how
far to count away from the center value to define the image which is “one σ” away
from the center. For example, if the pclip parameter is -0.5, then the algorithm will
count halfway from the center image to the image with the lowest pixel value (from
image 10 to image 6 if there are 19 images). The difference between the pixel value
of that image and the center image is defined as 1-σ. A negative pclip parameter
means that the algorithm counts down from the center; a positive pclip parameter
tells the algorithm to count up. You almost always want to use a negative pclip
parameter. The primary reason for outlyers which you want to reject to avoid biasing
your “average” combined value is that some images will have objects (stars, galaxies,
cosmic rays) in some images, which will be brighter than the center value. Most of

-37-

Data Reduction for the Deepsearch

Median

σ1
Images with
stars on the pixel

Rejected imagesRejected
Images

Figure 3.1: A demonstration of a pclip algorithm. The plot
is a histogram of pixel values. The shaded pixels are those
whose values are below the median. The darker shaded values
are those who represent the 45% (corresponding to the pclip
parameter of -0.45) of the pixels below the median which
closest to the median. The value σ is defined by the spread
of these darker shaded pixels. Any images whose values are
more than 3 times this defined σ away from the median are
rejected.

the values lower than the center value are lower simply because of the natural spread
of the flux distribution. Thus, measuring a “noise” of the flux distribution will be
less biased if you measure it off of the low side of the distribution than the high side
of the distribution.

Once the σ value is defined, all images whose value in that pixel is more than a
certain cutoff (e.g. 2 or 3) times the value of sigma from the central value are rejected.
Those images who are not rejected have their pixel values averaged, and the result of
that average gives the value of the flatfield in this pixel.

This entire procedure is repeated for every pixel of the image.

Note that all images must be appropriately scaled before this algorithm will work.
Consider two domeflat images, one of which was taken with lamps twice as bright as
the other. In general, most of the pixels in the first image will have a value twice as

-38-

Data Reduction for the Deepsearch

bright as the pixels in the second image— but you don’t want to reject them simply
for that reason! Both flatfield images may be good and useful flats. Before the pixels
of different images can be compared, the images as a whole have to be scaled to
a common normalization. This is generally done internally in flatfielding routines.
(In Deeplib’s pclipflat, the -sc (or “SCALEBY”) parameter specifcies the method of
scaling.)

3.2.3 Preemptive Object Rejection

Although in principle, the pclip procedure should be sufficient to prevent stars in
some flatfield images from biasing your combined flatfield, sometimes it helps to give
the pclip a head start. In particular, if you have a relatively small number of images
(less than, say, 21), or if the images are correlated (i.e. taken of the same field of sky
with only small telescope dithers), it is often necessary to perform some sort of object
rejection. Before the images are sent to the pclip algorithm, an object finder is run on
them. This object finder locates stars and galaxies, and masks out the appropriate
pixels on the image where they are found. The pclip algorithm will then hopefully
have an easier time getting rid of any remaining outlyers.

3.2.4 Making a Flat

The Deeplib command to make a flat is pclipflat. A typical invocation might look
like:

% pclipflat flatsR.lis FlatR.fts -im 2 5 -t tmp \
-p -0.3 -ls 3 -hs 3

Note that for this command to work, the directory tmp must exist as a subdirectory
of the current directory. Create it with “mkdir tmp”. The file flats.lis is a text
file which lists the images you intend to combine into a flatfield; this file looks exactly
like the file you used for creating a Zero image (Section 2.6). The output flat image
will be written to FlatR.fts. Here, a pclip parameter of -0.3 is used, along with
cuts of 3− σ both below (-ls) and above (-hs) the center value (which is by default
the median). The -im parameter tells the program to build an “isomask”, which is a
mask of objects located and rejected as discussed in Section 3.2.3; 2 and 5 are good
standard parameters to use with -im. The tmp directory is only necessary when you
use the -im parameter. In general, you will want to use -im for twilight and super
flats, but will not need it for dome flats (which tend not to show much in the way of
images of stars).

-39-

Data Reduction for the Deepsearch

You may find that you get better results by changing the -p, -ls, and -hs param-
eters. Bear in mind what they mean. If you have a very small number of images, then
values of -p too close to zero become troublesome. (E.g., if you are only combining
7 images, Then only 4 will be at or below the median. If you set -p to -0.3, then the
difference between the central pixel value and the one below it will define your “1-σ”.
If those values happen to be very close together, σ will be very small, and most of
the rest of the images will get rejected.)

If you have a multiple chip camera, the command might look like:

% pclipflat flatsR.lis FlatR @chip@.fts \
-ch a b c d e f g h \
-im 2 5 -t tmp -p -0.3 -ls 3 -hs 3

The -ch parameter, and the use of @chip@ (both in the output flatfield filename and
in the filenames in flats.lis) are discussed above in the section on creating a Zero
image (Section 2.6)

There are a whole host of additional parameters which may be given to pclipflat.
Run “pclipflat --help” to see what they are. Some are worthy of mention. You
may want to use -sb to improve the background subtraction used internally in the
creation of an isomask. After you have been through this procedure a few times, you
will understand what a “surface box size” is (Section 5.1). If you have a very large
number of images (say 21 or more), you may wish to use “-pf mode”. Here, the
central pixel value in the pclip algorithm is defined by the mode of the distribution
rather than the median. For too few values, the mode of the distribution becomes ill-
defined and difficult to calculate meaningfully; for that reason, by default the central
pclip pixel is normally defined by the median of the values.

Since sometimes combining flatfields can be a computationally intensive process, it
is possible to use multiple CPUs at the same time with the parpclipflat command.
Use of parpclipflat is beyond the scope of this manual, but if you know how to use
MPI and mpirun, that’s what you use with parpclipflat. In so doing, you will need
to know that the first (zeroth) process is a mere driver process that will use very little
CPU, so if you are on a two-cpu machine, you might actually want to specify -np 3

with mpirun; if you explicitly specify the machines to use with -p4pg, remember to
take this into account. Be aware when using multiple machines that eventually the
speed of NFS will limit you, and adding more CPUs will only further burden the poor
NFS server hosting the disk without improving your running time. If this paragraph
made no sense to you, then ignore it, and deal with how long pclipflat can take.

-40-

Data Reduction for the Deepsearch

Separate Flats for Separate Filters

You need to make a different flat for each filter. If a data set includes images
taken through the V, R, and I filters, you need to make three different flats. Only use
the R flatfield to correct R data, and so forth. Anything else will cause big problems.

Normally, you will make a different flatfield for each night of data. If you are
reducing data from a three-night run, you will make one flatfield for the first night,
another for the second night, and a third for the third night. If, however, you only
have a handful of images from some of the nights, it is OK (if not optimum) to either
use a flat from another nearby night (on the same telescope, of course), or to make a
combined flat from individual flatfield images collected from different nights.

How Many Flats is Enough?

The general rule is: more is better. However, it may take too much processing time
to combine too many flats. For dome flats, frequently 7 is plenty, and anything more
than 15 individual flats is overkill. For twilight flats, use all that you can get your
hands on for a given night. Twilight usually doesn’t last long enough for the observer
to obtain more flats than is necessary.

For sky (super) flats, if possible use every image in the appropriate filter to make
your combined flatfield. If that is excessive, then using just 15 is barely adequate;
21 is usually adequate; more is better. Especially if you are using a smaller number
of target (or sky) frames to make a superflat, you will have better results if you
deliberately omit frames that have extremely bright stars or very large galaxies.

Selecting Images From Which To Build a Flatfield

For dome and twilight flats, usually you will select every dome or twilight image of
the appropriate filter, and combine them all into a flatfield.

For super (sky) flats, you want to make sure that you are only including the “right”
sky images. In particular, do not include dome images when building a superflat; also,
be sure not to include bias images, focus images, or test images. Also, standard star
images usually have a very short exposure time, and will not have enough sky signal
to make them a useful contributor to the flatfield. Indeed, short exposure time images
may be actively detrimental, in that they will skew the tests used for rejecting objects
in the flatfield. For sky flats, it is usually best to include every frame of the right filter,
which is not somehow screwed up, that is of the night sky and has a “long” exposure
time (usually, greater than something like 20 or 40 seconds). Use of hselect is a
good way to get a quick list of the images and their exposure time and filters.

-41-

Data Reduction for the Deepsearch

3.3 Evaluating a Flat

How flat is flat? In principle, the flatfield image should be flat, that is, all the pixels
would have the same values and clean, without any features. One way to check the
quality of your flat is to look at it (see Section 1.6). Look along both the columns
and rows, the pixels should have about the same value with a few percent variation.
(If you used Deeplib’s pclipflat to create the flatfield, they should all be close to 1,
although in a multiple-chip camera the average value may vary a little from chip to
chip.) In practice, though, you’re likely to see a gradient (a full discussion is saved
for later). Another good check on your flatfield is to flatten one of your individual
(preprocessed) night sky images or twilight flat images with the resulting Flat (see
Section 3.4). The resulting flattened image should be free of dust features, and be
flat. Verify this by looking at the image with testfitswidget.

If the flattened twilight flat looks odd... extra features that weren’t there in the
unflattened image, for example, check the individual flats since sometimes one of
them is really not useful. If the twilight flat was taken toward the end of twilight,
as the sky got darker, there could be several stars in the image, or the average count
level is lower than others, or the telescope wasn’t dithered between exposures which
would also show up as extra features. After you’ve eliminated the “odd” flat images,
rerun flatcombine and generate a new Flat.

In particular, if making a twilight or a sky flat, look for residual stars in the
flatfield, which will show up as very dim, small, smudges. Ideally, the rejection and
medianing procedures eliminate stars, but if you don’t have enough images, they may
leave behind little signals. It is possible that they are real; try making a domeflat in
addition to the other flat. If the smudges are real features, they should show up on
the domeflat as well. One quick test is to divide a twilight or superflat by a domeflat
(using imarith). While frequently you may see a broad but shallow gradient in this
divided image, you should not see much in the way of localized features or smudges.

The first thing to do in order to try to get rid of these, especially in the case of
sky flats, is to try again using more individual flatfields and rebuilding the flatfield.
For instance, you may conclude that it’s impossible to get a decent flatfield from one
night of the run, and combine a flatfield from two or three nights together. If that
doesn’t help, try fiddling with your rejection parameters. If that still doesn’t work,
then, woe is you, for you must refer to section 3.5, “Advanced and Iterative Flatfield
Creation.”

NOTE TO ROB: Write about checking the sigma of flat.

Sometimes, especially on nights with moon, and especially when making those
prized sky flats, each image will have a slightly different bulk gradient across the im-
age. This will tend to completely screw up any median or outlyer rejection procedure

-42-

Data Reduction for the Deepsearch

you used, and make it seemingly impossible to make a good flatfield. If this is the
case, you must refer to Section 3.5, “Advanced and Iterative Flatfield Creation.”

Once you’re happy with the Flat, it’s time to apply it to your object images.

3.4 Applying Flats to Your Object Images

With Deeplib, it is as simple as using imarith to divide your object by your combined
flatfield. Make sure that your flatfield is normalized to 1 before you do this! (By
default, the output from pclipflat will be.) For multiple chip cameras, all of the
chips should together be normalized to 1, but each chip may not be; again, if you use
pclipflat, things will “just work”. Be sure to apply the flatfield of a given filter
only to images of that filter. . . and conversely that each image gets flatfielded, using
the right flatfield. Also, with multiple-chip cameras, make sure to apply the flatfield
for the right chip to each image.

3.4.1 Evaluating How Good a Job the Flatfielding Did

Once you’ve applied a flat to all of your target images, you should evaluate the images
to make sure that the flatfield procedure did what it was supposed to. A few things
to look for:

• Make sure that no new features were introduced to the images when dividing
by the flatfield. If new features (bumps, wiggles, “holes” (bumps down), and
generally junky-looking things) were added, there is probably something wrong
with your flatfield.

• Artifacts such as “dust donuts” should be gone from your sky images.

• Measure the noise of the sky background (for instance, by dragging out a box
on a small (e.g. ∼ 25 × 25) area of blank sky with the left mouse button
in testfitswidget). The noise (standard deviation of sky pixels) should be
measurably lower after you apply the flatfield, and certainly should not be any
higher; the point of flatfielding is to eliminate the noise σf from the image (see
Section 1.4.2). If everything has gone perfectly, if you had the right gain when
you did gain multiplication, if the read noise is insignificant, and nothing else is
awry, then the standard deviation measured on a region of blank sky should be
very close to equal to the square root of the mean flux of the sky in that region.
(This would not be true if you had not applied gain multiplication.)

-43-

Data Reduction for the Deepsearch

3.5 Advanced and Iterative Flatfield Creation

3.5.1 Why Do It?

Sometimes, the procedure outlined above for building the flatfield will fail. The
primary reason is that when medianing a lot of images together, you are implicitly
assuming that the images all have the same continuum (background) shape. Because
of the optics of the telescope and the gain profile of the CCD, a constant (flat) sky or
defocused dome image may be artificially measured to be brighter on one part of the
image than another part of the image; flatfield correction will ideally remove these
differences. Since all of the images have the same background shape, simply scaling
them all to the same average level should mean that, except for brighter pixels like
stars and cosmic rays, all the images look basically the same.

Sometimes, however, there is a different varying background from one image to
the next. The usual reason for this is if there is a bright moon. The sky may be
brighter nearer the moon than it is further from the moon. Since all images in one
night won’t be taken in the same place, a gradient in the background due to the moon
may be different from one image to the next. This will cause problems when trying
to reject stars by medianing images.

INSERT FIGURE SHOWING 1D CASE OF THIS PROBLEM

Most of the time, hopefully, the simple flatfield procedure outlined above will
be sufficient for making super flats (sky flats). You can tell that you need to do
something more sophisticated if you see any of the following things:

• There are features, perhaps looking like residual stars, in your flatfield image
which can’t be eliminated by combining more sky images into your superflat.
(See Section 3.3.)

• Look at several of the sky (or target) images of the same filter that are going
into your super flat. Is the gradient in the sky background different between
these images? For instance, is it brighter in the upper left corner in one image,
but brighter in the lower right corner in another image? Sometimes you will
have to do something more careful (i.e. plot, or divide two images) than just
looking at the images.

3.5.2 Two-Stage Flatfields

If you are able to build a domeflat for the night’s data, you can sometimes solve
the problem by using both a domeflat and a specially constructed superflat. The

-44-

Data Reduction for the Deepsearch

procedure for this would be, generally:

1. Do preliminary data reduction on all images, dome and sky and miscellaneous
(Chapter 2).

2. Make a combined domeflat (Section 3.2).

3. Flatfield all images with the combined domeflat (Section 3.4.)

4. Select the flatfielded (with a domeflat) images you will combine to create a
secondary superflat. Copy those images into a work subdirectory. (You will
corrupt these images during the following steps.)

5. Subtract a low-order surface from each sky images that will go into the superflat.
You want to subtract just the slope of the image, not its mean value. You can
do this with the Deeplib task surface (See section 1.7), using the command
line:

% surface filename -s outfilename -sz

That will subtract a first order surface (a plane) centered about zero from
filename, and write the resultant (subtracted) image into outfilename. The
input and output filenames may be the same, in which case the input file will
be overwritten. (Not a big deal, since you are in a work directory.)

Do surface --help to see the flags you can specify to tune object-rejection
parameters and to do higher order fits to the background. To decide how high
an order you need, run surface with the -surf flag instead of the -s flag, to
write out the surface that would be subtracted. Compare this to the image from
which you will be subtracting the surface, using IRAF’s display and imexamine
(Section 1.6). Also, after you have subtracted the surface, look at the image to
make sure it is flat. Try this with a number of different orders on a sample of
images from the data set.

ROB, MAKE A FIGURE

You may also wish to try using Deeplib’s edgesurface instead of surface.
(More discussion of the differences should be inserted here.)

6. Perform a pclipflat procedure on the surface-leveled sky images to create a
secondary superflat.

7. Back in your main directory, divide all of your images by this surface-leveled
sky. You do this to the images to which you have already applied the domeflat.
Note that IRAF’s ccdproc will probably balk at doing this, because it things
the images are already happily flatfielded. You may use the Deeplib program
imarith to divide images by the flatfield (assuming it is properly normalized,
which it should be if you used pclipflat properly).

-45-

Data Reduction for the Deepsearch

8. Evaluate how well it worked (see Section 3.4.1). In particular, make sure that
the sky noise is no higher after applying the secondary the secondary flat than
it was before applying the secondary flat.

3.5.3 Iterative Flatfields

Sometimes, a two-stage flatfield isn’t possible; either you don’t have individual dome-
flats from which to make a combined domeflat, or for another reason domeflats or
unsatisfactory. Or, perhaps, you decide that even two-step flatfielding procedures
were insufficient. In this case, you need to iteratively create a superflat. The outline
of the procedure is that you make a first cut at a superflat. In a work directory,
you apply this superflat to all of the individual images that went into the superflat.
Use these to fit a gradient in the background to each image, and subtract that gradi-
ent from the original (pre-flatfielded) image. After that subtraction, combine again
to make a second cut at a superflat. Repeat the procedure until you have a good
superflat, or until the superflat does not change from one iteration to the next.

ROB, WRITE THIS OUT IN MORE DETAIL

-46-

Data Reduction for the Deepsearch

Chapter 4

Fringe Correction

4.1 Introduction

Sometimes, after flatfielding, I-band (and even occasionally R-band) images will show
“fringing.” This is an interference pattern of sky photons within the thin wafer of a
thinned CCD. Although you might expect that the continuum of the sky would wash
out the fringes, there are enough narrow emission lines in the I-band sky that fringes
are visible. These fringes need to be subtracted from the image. They represent a
very high-order variable background which is extremely difficult to deal with using
traditional background subtraction methods.

Sometimes, flatfielding with a superflat removes most of the fringing. This is
because the fringing pattern is also visible in the fringing. Purists will object that
this is actually not a perfect correction, because the fringing does not represent gain
variations between pixels, but rather an additive pattern on top of the sky continuum
due to the sky emission lines. As such, while dividing by a superflat may take out the
fringing, in terms of what needs to be done for objects, you are dividing by too much
where the fringes are high, and by too little where the fringes are low. In practice,
the differences are small enough that we do not worry about this (we just accept that
as an additional part of σ?; see Section 1.4.2); additionally, it flattens out the sky,
removing much of the adverse affect of the fringing on aperture photometry. If you
want to be a purist, then you will use a twilight or domeflat for flatfielding, and then
perform a fringe subtraction as described in this chapter. After that, you may wish
to go back to the previous chapter and iterate one more time on a superflat, in case
there are any residual gradients due to a different broad gradient in the domeflat and
the night-sky images.

Even if a superflat removes most of the fringe pattern, sometimes there is enough
left over that it’s still worth performing the fringe correction procedure in this chapter.

-47-

Data Reduction for the Deepsearch

The fringe correction procedure basically involves first creating a map of the fringes.
Then, for each image, you must determine the proper amplitude of that map to
subtract from the image.

4.2 Making a Fringe Map

Ideally, a fringe map should have just the pattern of the fringes, and no other structure
(such as stars or galaxies, flatfield pixel-to-pixel variations, or broad gradients). The
best way to make a fringe map is to make both a dome flat (or, possibly, a twilight
flat) and a super flat (section 3.1.2). Because the superflat represents a night sky
signal, it will include the emission lines that cause the fringing, and so will show the
fringing pattern. The domeflat, which is normally an image of broadband lights on
the dome surface, show very little or none of the fringing pattern. By dividing the
superflat by the domeflat, you are effectively flatfielding the superflat. This should
remove any pixel-to-pixel variations. After this, subtract the smooth background (a
single “sky” value or a low order surface using surface or (best of all) edgesurface
with a relatively large box size (200 or so)) from the fringe map, so that you are left
with just the fringes varying around a zero mean.

If you do not have the calibration frames necessary to make a fringe map (i.e. both
super and dome flats), you can use a fringe map made for the same telescope and
camera from a previous run. This is not ideal, but usually good enough. However,
you must make very sure that exactly the same trim correction (section 2.3) was
applied to the fringe map you are using and to the data set you are reducing. You do
have to be very careful to make sure that the fringe map from the previous run and
your fringe map used exactly the same trim region (Section 2.3)!

4.2.1 Dividing Super and Dome Flats

This may be done very simply using the IRAF task imarith or the Deeplib program
also called imarith. Alternatively, you can do this in IDL using readfits a couple
of times, followed by a division and a writefits.

Only the pattern of the fringes is important; the exact amplitude is not. The
amplitude will tend to vary from image to image anyway, so that will be fit later
when removing fringes from each image. However, it is convenient for the rest of this
procedure if the amplitude of the fringes in the fringe frame is in the right ballpark.
The super flat, combined from all of your target images, will have an effective exposure
time, and hence an effective background and fringe amplitude, which is about right.
After dividing the super flat by the dome flat, multiply the resultant image by the
average (or median) value of the dome flat (or just by 20,000, which is almost always

-48-

Data Reduction for the Deepsearch

in the right ballpark). The Deeplib routine mulconst can accomplish this:

% mulconst FringeI.fts 20000 FringeI.fts

4.2.2 Subtracting the Low-Order Background

You want the fringe map to have the fringes oscillating about zero. Ideally, at this
point, all you should have to do is take the mean value of your fringe frame and
subtract it. However, the super flat and dome flat may have slightly different broad
gradients across the image. (This is one reason a super flat is usually preferred.)
Thus, it is better to fit a low order “sky” to the fringe map and subtract that.

One cleaner way to subtract a low order background is to fit a plane, or another
low-order (2nd, 3rd, etc.) surface with the Deeplib program surface. This routine
will calculate an outlyer-rejected mean for every (by default) 100×100 region on the
image. It will then fit a low order surface to those averaged points, and subtract that
surface from the input image. Type “surface --help” for information on using this
program. In most cases, your use of this program will look like:

% surface rawfringe.fits -o 3 -s finalfringe.fits

where rawfringe.fits is the name of the fringe file produced in the previous section,
the number after -o is the order of your fit, and finafringe.fits is the fringe map
with the low-order background subtracted.

Alternatively you may use the Deeplib routine edgesurface, e.g.:

% edgesurface rawfringe.fits deleteme.fits -so finalfringe.fits

-bx 200

Be sure to use a box size small enough to capture the shape of the background, but
big enough that it doesn’t start subtracting out the actual fringe features. The file
deleteme.fits will have the background subtracted; you can look at it to see if it
shows too much evidence of the fringe pattern itself.

When all is said and done, use your favorite method for looking at images to make
sure that the fringe map looks reasonable. It should have a mean or median of (or
very close to) zero, there shouldn’t be any broad low order gradients, and it should
generally look the same as any fringing which may be visible in any of the I-band
images.

-49-

Data Reduction for the Deepsearch

4.2.3 Smoothing a Fringe Map

You don’t want to introduce additional noise in your fringe map. Ideally, the Super
and Dome flats used to create the fringe map are of high enough signal-to-noise that
you won’t. However, you may wish to smooth the fringe map, for instance by using a
median filter, to reduce the pixel-to-pixel variations in the fringe map. You may also
wish to clip out bright spikes and anti-spikes.

To clip out bright spikes and anti-spikes, use the Deeplib procedure levelextremepix;
run

% levelextremepix --help

for more information. Choose your LOW and HIGH pixel values to be comfortable
outside the range of the fluctuations of the real fringes, but not too much more than
that. After this, run Deeplib’s medfilt to smooth the image. Choose the box size
such that it’s smaller than the typical width of a fringe; medfilt’s default box size
of 5 is often a good choice.

4.3 Applying the Fringe Map

You apply a fringe map by subtracting a fraction of it from each flatfielded image
that requires fringe correction (usually, all I-band images). In other words:

i′ = i− a× f

where i is the flatfielded image, f is the fringe map you made in section 4.2, and a is
an amplitude. The game is to figure out the best value for a. One laborious way of
doing this is to try lots of values of a (using, for instance, Deeplib programs mulconst
and imarith), looking at the image each time and decided which one minimizes the
fringe pattern by eye. The surgeon general has warned that doing this for more than
a couple of images can cause permanent insanity.

A better way is to use a program that will try a range of values of a, measuring the
noise of the sky background in i′ for each value. This program should then find the
value of a which minimizes that sky background. The Deeplib program fringecor

will do just this. It starts by trying a range of a (by default, 0–2), finding the sky
noise in i′ for something like 10 values of a in this range. It plots the sky noise as a
function of a, fits a parabola, and zooms in around the minimum of the parabola. It
repeats this process until the values of a which go into the parabolic fit are at least
as close together as a user specified “minimum step” (by default 0.01). In order to
determine the sky noise, fringecor first uses a pclip algorithm (see section 3.2.1 to

-50-

Data Reduction for the Deepsearch

make a mask which will block out all the objects (stars, etc.) in image i. (I suggest
using “lowsig” and “highsig” limits of 8., and a “dilate” value of 5. You can get
the program to write out a copy of the mask it uses, if you want to make sure your
masking values make sense.) It calculates the sky noise of unmasked pixels about a
local average sky value (which is by default the average sky value within a 200× 200
pixel box). This method should be robust to slow gradients in image i.

For information on the calling sequence of fringecor, issue the command fringecor
--help. The PLOT (or -pl) keyword is particularly useful when you are first running
fringecor on a batch of data, to make sure that you have chosen a good initial
range of a and that things are running correctly. Once you have the parameters set
up, fringecor is slow enough that you will probably want to set up a batch job to
fringe correct an entire run in one go.

4.4 Evaluating the Fringe Correction

You evaluate the fringe correction in pretty much the same way as you evaluate
anything else. Look at the image to make sure that the fringe pattern has indeed
decreased or disappeared, and to make sure that no artifacts were imposed on the
image by the fringe correction procedure. Use your favorite image statistics routine
(see, for example, Section 1.8.1) to make sure that the sky noise does in fact go down
with the fringes, and that the median and/or average value of the image as not overly
changed.

Sometimes, you may want to try two different fringe maps (e.g. if you can’t
make one for the current run, but you have two fringe maps on record). If it is not
visually apparent which one did a better job, you can look at the last plot produced
by fringecor PLOT to figure out what minimum sky noise value fringecor found
for that fringe map. The fringe map that produces a lower minimum sky noise value
will usually be the better one.

There will be times when the fringe correction makes the images worse. Currently,
the fringecor program determines what it thinks is the “best” scaling a of the fringes
by figuring out what value of a minimizes the sky noise. This may not actually be the
best way to do it, but I’m not sure what is. Especially when the fringecor program
comes up with a negative value of a, be suspicious. Look at the “fringe-corrected”
images, and make sure the fringes didn’t get worse. If they did, either you will have to
laboriously determine a manually (trying lots of values and looking at how they affect
the fringe pattern), and then subtract the fringes manually using the “-a” argument
of fringecor. Alternatively, if the fringes are weak enough in images flattened with
a superflat, you may be able to skip the fringe correction step.

-51-

Data Reduction for the Deepsearch

Chapter 5

Loading Images into the
Deepsearch Database

In order to use your now nicely reduced images with much of the rest of the Deep/IDL
software (as well as, eventually, the Deeplib software), you will need to load the image
into the Deepsearch database. The image itself must be placed in one of the directories
where the software knows to look for images “in” the database, and a program (the
IDL routine ltelescope) must be run in order to add the header information about
the image into the database proper.

5.1 Dotting the t’s and Crossing the i’s

There are a handful of things which need to be done before loading the image into
the database.

Gain Multiplication

By convention, images in the Deepsearch database are scaled such that 1 ADU (or 1
dn) represents 1 photoelectron. If you did not multiply the images by their gain in
section 2.4, then you must do so now. Do not multiply by the gain twice! That would
be just as bad as not doing it at all.

-52-

Data Reduction for the Deepsearch

Determine Surfacing Parameters

Once upon a time, all the images loaded into the Deepsearch database were “sur-
faced,” i.e. sky subtracted. This was generally done using the Deep/IDL routine
edgsurface. There were a number of problems with this, so the surfacing require-
ment has been relaxed. Nonetheless, there are still some routines that require surfaced
images. The procedure now is to surface them on the fly. So that this may be as pain-
less as possible, you should determine the parameters of edgsurface which people
surfacing on the fly will want to use. Note that you will not actually keep the surfaced
images, or load them into the database, you will just figure out which parameters you
would have used.

You may use the Deeplib prodcedure edgesurface to edgesurface an image; run
“edgesurface --help” for more information. You may also use IDL, where you do
the following:

IDL> im1=readfits("filename",hdr)
IDL> ims1={ims struct}
IDL> ims1.nx=n elements(im1[*,0])

IDL> ims1.ny=n elements(im1[0,*])

IDL> sky,im1,sky,noise

IDL> ims1.sky=sky

IDL> ims1.exp sigma=noise

IDL> skyim=edgsurface2(ims1,im1,boxsize=boxsize, diff=diff , stepsize=stepsize,
oversamp=oversamp, dilate=dilate)
IDL> subim=im1-skyim

The variable im1 holds the image you are surfacing. skyim has the sky image
determined by edgsurface, and subim is the difference (i.e. the surfaced image).
You should look at skyim and subim to make sure that the surfacing is going as
planned. Ideally, you want to be able to remove the sky background at all points
on the image, even if there is a gradient or curvature to that background. However,
you do not want to oversubtract the sky underneath real objects. (Sometimes, this is
impossible for very bright stars.) If you see spots on skyim which correspond to the
positions of stars and galaxies on im1, then you know that you are oversubtracting
some objects. It is nearly impossible to do a background subtraction which is good
enough over the whole image which doesn’t also oversubtract some of the brightest
objects. (This trade-off is the main reason we have decided that it is no longer a good
idea to load surfaced images into the database.)

The game is to figure out the parameters boxsize, diff, stepsize, oversamp, and
dilate. Those parameters will be stored in the database entry for each image, allowing
somebody to quickly surface the image without themselves having to spend the time
to find the parameters. Normally, one set of parameters will work for an entire run of

-53-

Data Reduction for the Deepsearch

data, so you figure out the parameters by testing them on a handful of images, and
then use those parameters when loading the whole run into the database.

The meaning and typical values of these parameters is as follows:

boxsize The surfacing routine averages all pixels within a given box. boxsize is the
size of a side of this box in pixels (although the program does some scary things
to make an even number of boxes fit on the image). Typical values are 100-500
pixels. Smaller box sizes correspond to higher order fits, and will have trouble
with subtracting brighter objects. Larger box sizes correspond to lower order
fits, and may not be able to fully subtract a background with a curved gradient.

diff I don’t even really know what this is. 2 is a default value, so maybe it’s a good
one. I think that it has something to do with how many sigma (in terms of
ims[1].exp sigma) above the local mean a point must be in order to be recognized
as an outlying object (star, cosmic ray, whatever), but I could be wrong. You
can feel free to play with this to see if you can improve the results of your
background subtraction.

stepsize I don’t know what this is either, and I haven’t played with it, so I have no
intuition for it. The default value is 3. Use that unless you have a better idea.

oversamp Another great mystery of the universe. . . but I think that boxes are (some-
how) separated on the image by 1/oversamp box sizes. . . or something like that.
Play with it, and figure out what it does. The default value is 5; I’ve sometimes
used 2.

dilate When an object gets recognized as significantly above the background, the
masking routine “dilates” the mask about that object to include adjacent pix-
els. This is so that if only the center pixel of a star has high enough S/N to be
recognized as a bright object, the whole star may still be masked. This param-
eter indicates the radius of dilation. It defaults to 1 (which is either no dilation
or a 1-pixel dilation, I’m not sure which). You can try playing with values up
through 5 or 10, or even more if you think your images warrant it.

5.2 Rotating Images

We used to require a certain orientation in Deepsearch images. That requirement has
been relaxed; however, you still need to figure out the orientation (rotation and flip)
of the image so that you can set a field in the Deepsearch database properly!

The best way to figure out the right rotation is to look at the image and compare
it to some other image of the sky whose rotation you know. This might be from the
Palomar Sky Survey, obtained from a place such as SkyView:

-54-

Data Reduction for the Deepsearch

http://skyview.gsfc.nasa.gov/cgi-bin/skvadvanced.pl

Alternatively, you can use the IDL routines getapmcatalog and makeapmimage to
make a fake image of the sky based on the USNO star catalog.

If you simply cannot match the image at any rotation to the sky, it’s possible that
the RA and Dec in the header are wrong, either because it’s a multiple chip camera
and you don’t understand where the fiducial point of the coordinates is, or because
the RA and Dec are simply... wrong.

5.3 Checking RA and Dec in the header

You want the “RA”, “DEC”, and “EQUINOX’ (or “EPOCH”) keywords in the the
FITS header to correspond to the center of the image. Frequently, they do not.
There are a variety of reasons. Sometimes, as with the WIYN MiniMos, it is because
the EQUINOX keyword in the header is just wrong. Sometimes telescopes aren’t
pointing exactly where the header thinks they are. Frequently with multiple-chip
camears, every chip’s header will have RA and DEC keywords indicating the center
of the whole array, not of that chip.

You must fix the RA and Dec in the header of the images so that they are correct
for the center of each image.

5.4 Writing 16-bit Images

Unless you’ve coadded a whole bunch of images, despite using 32-bit floating point
numbers for the file format you usually only have 16 real bits of information within
each image. In order to save disk space, it is worth writing the images out in a
16-bit format. FITS images have a standard way of scaling floating point images
into short integers. In this scaling scheme, all pixels below a minimum value, and all
pixels above a maximum value, will be clipped to the minimum and maximum values
respectively. Naively, you might choose the minimum and maximum pixel values in
your image as the clipping parameters. However, consider the case where most of
your images has pixel values between 1000 and 4000, but you have one pixel (because
of a cosmic ray, or a low value on the flatfield) whose value is 1012. Choosing 1012

as your clipping maximum will cause all of the dynamic range in the region you care
about (1000–4000) to be lost. You’d rather screw up the 1012 pixel than the pixels
with good information about sky, galaxies, stars, and supernovae.

The best way to choose the maximum clipping value for an image is to keep track of

-55-

Data Reduction for the Deepsearch

the “welldepth” of the image. The “raw welldepth” is the maximum pixel value which
would have been returned from the telescope. For many cameras, the raw welldepth
is 32768 or 65536. However, some detectors will have a lower raw welldepth. (In
those cases, the pixels will saturate before they reach the limit of counting for 16-bit
integers.) You can often figure out the raw welldepth by looking at a raw image from
the telescope, finding some saturated stars, and looking at the values of the saturated
pixels.

The raw welldepth will be modified by all of the operations you apply. Ideally, it
won’t be much affected by flatfielding, but it will be affected by overscan correction
(the bias level being subtracted from the effective welldepth). It will also be affected
by gain multiplication! If you coadd images before loading them into the database,
the welldepth of the added image will be the sum of the welldepths of the images
that went into the coadd. If you successfully keep track of all of this, you can choose
your clipping maximum to be equal to the welldepth (or something like 1.05 times
the welldepth) of your reduced image.

There are two ways to choose the minimum clipping parameter. The first, assum-
ing you’ve done no sky subtraction (which you shouldn’t have), is to just use 0. A
better way is to look at your images and find what looks like the minimum sky value.
(You could do this in an automated fashion using the Deeplib program surface to fit
a low-order surface, and then read the minimum pixel value from that surface.) You
can use the Deep/IDL routine SKY to find the sky noise in the image. Set your clip-
ping minimum to the minimum sky value minus 10 or 15 times the sky noise. (Note
that sometime the SKY routine screws up for short-exposure standard star images. If
this is happening to you, figure out what the sky noise roughly is, and hard-code the
minimum value to a negative value more or less “several” times that sky noise.)

Once you know your clipping maximum and clipping minimum, use the Deeplib
routine bscale to produce a 16-bit version of your final reduced FITS images. The
images which come out of bscale should be roughly half the size of the images that
go into them. Look at these images, and use things like imstat and the Deep/IDL
SKY on them, to make sure you didn’t completely screw them up when you wrote the
16-bit versions.

5.5 Setting Header Parameters

Note: often you will find that writing 16-bit images, and adding random header key-
words (section 5.5) is easily done at the same time using a “preload” IDL script which
you write. Two examples may be found in ~rknop/idlpro: for single chip cameras,
preload.pro is a script Rob has used in the past, and for the eight-chip CTIO Mo-
saic camera, there is preload2.pro. Do not use these script without copying

-56-

Data Reduction for the Deepsearch

them to your space and modifying it! They almost certainly do the wrong thing!
(Note also that they currently rotate the images based on an old requirement of the
Deepsearch database. You may choose to do so, or you may choose not to do so.)
Rob finds it simpler just to do so at this point. There are arguments for both.

There are a handful of header parameters which must be set right for the images
to be correctly loaded into the Deepsearch database. All of these parameters should
be set in the final images you intend to load into the database. If you are clever, you
can keep track of them as you go. Otherwise you will have to do some work now to
get them set right.

The easiest way to edit header parameters is to use IRAF’s hedit. However,
you may also get some mileage out of IDL’s readfits, integerfits, sxpar, and
sxaddpar. It’s easy to do the wrong thing with IDL’s FITS header routines, so be
careful, and make sure you know what you’re doing. (Hint: use the “format” keyword
with sxaddpar.) If you do this with IDL, it is convenient to do the writing of 16-bit
FITS files (with integerfits) at the same time.

5.5.1 detspec, dettag, numchips, etc.

These are very important to get set right. Look at

$DEEPHOME/calibration/det spec.html

for more information on these fields and their values. Speak with Rob or somebody
else who has a clue about them before doing anything rash.

5.5.2 Welldepth

This should be set to the welldepth determined as described in section 5.4.

5.5.3 RA and Dec

These keywords will almost certainly be in the header already. If you are reducing
data from a single chip camera, then they are probably right. However, if you are
reducing data from a multiple chip camera, it is probable that the RA and Dec will
be of some reference point of the whole camera’s footprint. This is discussed above.

Your best bet is to use methods similar to the method of finding the rotation
(section 5.2). Also, try to find, either by asking somebody in the group or looking

-57-

Data Reduction for the Deepsearch

at the telescope’s web page, known offsets and sizes of the chips in a multiple chip
camera. At that point, it’s a matter of trial and error. It is especially painful if the
RA and Dec in the header of a multiple-chip camera are wrong. In those cases, the
telescope logs may be of help; otherwise, you may just have found out how you’re
going to tediously spend the next several hours.

Try for example the following IDL commands; they may work, or they may not.

IDL> r=freadimage2(ims1,im1,’./filename.fits’)
IDL> print,sixty(ims1.ra),sixty(ims1.dec),ims1.epoch

Make sure that these are what the header says!
IDL> sky,im1,sky,sig

IDL> window,0

Or wset,0 if the window already exists.
IDL> frame,im1,zero=sky,span=10.*sig

IDL> dx=0

IDL> dy=0

IDL> apmim=makeapmimage(ra=ims1.ra+dx/60./15./cos(ims1.dec*!pi/180),$

dec=ims1.dec+dy/60.,/xy,fielddiax=15.,fielddiay=15.,$

nx=1000,ny=1000)

IDL> window,1

Or wset,1 if the window already exists.
IDL> frame,apmim,zero=0.,span=20000.

(Note that the $’s at the end of the lines are the character that IDL uses to indicate
a line is continued. If you type the makepamimage command all on one massive
line, omit the $’s.) Replace the actual size of the image in arcminutes (which you
can probably find out from the observatory’s web page, or from reading the source
code to the Deep/IDL routine ccdsize) for fielddiax and fielddiay; they will be
different if the chip is not square. The ratio of nx to ny should be the same as the
ratio of fielddiax to fielddiay. Repeat the last five times, altering the value of
dx and dy, until you see a visual match between the star pattern in the image and
created from the USNO catalog by makeapmimage. When you have a match, dx and
dy are the offsets for this image.

If you know where a given chip is relative to the center of the array, you might
want to start with better values than 0 for dx and dy.

5.5.4 Others

I’ve almost certainly forgotten something.

-58-

Data Reduction for the Deepsearch

5.6 Loading the Images

The Deep/IDL routine ltelescope is currently the only way to add images to the
Deepsearch database. What it does is add information about the image into an SQL
database, and into a (probably redundant) NetCDF file. The image itself is not
actually added to the database proper, just information about the image.

To use ltelescope, build a “list file” that has a list of all the images you wish to
load into the database. (It should go without saying that you should only do one run’s
worth of data at a time. Do not list images from multiple detectors (i.e. different
values of det tag) within one list file. Then issue the command:

IDL> ltelescope,list="listfile",det tag=" telescope", $

suffix="cln",optional parameters. . . , $

set keys=[’SURFACED=0’, $

’SURFBOX=boxsize’, $

’SURFOVERSAMP=oversamp’, $

’SURFDILATE=dilate’, $

’SURFSTEP=stepsize’, $

’SURFDIFF=diff ’ $

’ROTATE=0’]

det tag should be exactly the same as the values of det tag you put into the
image headers. The sundry parameters whose name start with “surf” are the surfacing
parameters you found in section 5.1. Note that the “SURFACED=0” keyword indicates
that you are loading non-surfaced images. You did realize during the surfacing above
that you were just figuring out which parameters you would use, and that you weren’t
supposed to really surfaces images, yes?

If you did not rotate the images to the Deepsearch standard orientation, then
ROTATE should not be 0, but rather the parameter you would pass to the IDL rotate

command in order to rotate the image from its current orientation to the standard
Deepsearch orientation (north down, east to the left).

The “optional parameters” may not be optional; which additional parameters you
need to use depend very much on the specifics of the telescope for whose data you
are adding. Some of the ones which you may need to use:

order Set order=’mdy’ for telescopes who store the date parameter in the header
as month-day-year. Other options you may need to use are ’dmy’ and ’ymd’.
Use your good sense.

-59-

Data Reduction for the Deepsearch

namerun Some particularly obnoxious telescopes don’t put a “run number” into the
header. This is just an ordinal number used to tell one image from the next.
If there is nothing in the header, you can specify this keyword to indicate that
ltelescope should should attempt to glean the run number from the filename
of each image.

nostop Specify “/nostop” to keep ltelescope from warning you when key header
parameters are missing. See section 5.6.1.

nooffset If you’ve manually adjusted the RA and Dec in the header of multiple-chip
cameras (usually a good idea!), then specify “/nooffset” to make sure that the
offsetting hacks in ltelescope don’t get used.

Read on for what to do once you get ltelescope started. Whenever anything
scary happens, refer to section 5.6.2.

5.6.1 Interactively Specified Parameters

Image Type

If you managed to get ltelescope started correctly, the first thing it will ask you
is for the “image type.” Usually, you will indicate 5 here for “Cleaned” images.
The only other type you might use is 6, for “Com” images. Com images are images
which have been cleaned, but which have previously been through some sort of lossy
compression (such as hcompress).

Filter

ltelescope is deliberately too stupid to automatically recognize filters. It will give
you an output indicating the text filter it has gleaned from the header of an image,
and ask you to enter the number that corresponds to this text. Usually, this will be
obvious. If you are loading a lot of images at a time, it will only ask you the first
time it reaches any filter description.

It will also ask you to enter a filter description. Most of the time, you can just
type the same thing that the program found itself.

-60-

Data Reduction for the Deepsearch

Keyword was not set!

Frequently, ltelescope will stop warning you that one or more keywords weren’t set.
This is because either you didn’t put something in the header that you should have,
or because the telescope whose data you are loading has not been properly defined
within the bowels of the Deepsearch software. If it is only the keywords BIAS and
RONOISE that are missing, you can normally ignore this; of course, if you are a very
good citizen, you will address the problem. If any other keywords are missing, you
should probably figure out how to either get them in there, or get ltelescope know
where to find the appropriate values.

There are two ways to keep ltelescope from stopping every bloody time it finds
an image with header keywords missing. The first is to specify the “/nostop” option
to the ltelescope call. You should only do this if you’ve restarted ltelescope after
a first trial run, and know that nothing crucial is missing. The other is to issue the
IDL commands

IDL> nostop=1

IDL> .c

during one of these stops. It should not stop thereafter.

File Being Renamed. . .

At this point, ltelescope will almost certainly rename your file to conform to the
Deepsearch standard. You should make very sure that the filename is what it ought
to be. In particular, make sure that ltelescope has parsed the date correctly. If it
hasn’t, you may need to use another keyword to ltelescope such as “order”. Also,
make sure that the run number being set is the one you’d expect. For most telescopes,
this should be exactly the run number of the image. For the BTC, it should be the
run number times ten, plus the chip (1 through 4).

Once you are convinced that ltelescope knows what it’s doing while renaming
images, you can answer “all” to the question about whether it’s OK to rename the
file; thereafter, ltelescope will not bother you further.

If there is a problem with the filename, you should answer “n” to the question
about whether it’s OK to rename the file. Then use the IDL commands retall and
close,/all, fix whatever the problem is (e.g. by adding keywords to ltelescope),
and restart ltelescope.

-61-

Data Reduction for the Deepsearch

5.6.2 In Case of Trouble

Whenever you have trouble with ltelescope, it should be all right to do CTRL-C to
quit the program. (You may have to type a character and hit return after that to
get it really to quit.) Thereafter, as always when doing CTRL-C in IDL, issue the
commands retall and close,/all. You can then try a modified command line, and
restart ltelescope. Hopefully, from the output of the program, it will be clear to
you when ltelescope is actually renaming files and loading things into the database.
Up until that point, it hasn’t done anything irreversible.

5.6.3 Watch for Errors!!

Watch ltelescope carefully to make sure everything gets loaded which you think is
getting loaded. At the end, run tracker, with parameters to list the files you’ve just
loaded in. Count the files (presumably using code rather than just counting lines on
the screen by hand), and make sure as many got loaded as you wanted to load. If
something didn’t work, try to figure out why and fix it. Be careful! It’s easy to let
files fall through the cracks if you don’t pay enough attention. Ideally, everything is
automated and just works. In practice, it’s always something new that goes wrong;
there are so many things that could be screwed up about individual astronomical
images and image headers, that there’s no way the software could anticipate all of
them.

5.7 Removing Images from the Database

There is currently no safe and documented way to do this. So, please be careful before
loading something in. Rob is able to remove things from the database, but the tools
he has are not user friendly enough that he’s willing to release them to something
else. So, if some images must be deleted, talk to Rob.

5.8 Moving the Images

Now that you have loaded the information about the images into the Deepsearch
database, you must move the actual images to a directory where our software will
know to find them. The images must be somewhere on the “deep image path,” which
is a list of directories set in the environment variable DEEPIMAGEPATH. Pick a disk on
the deep image path with enough free space to accept all the images you have just
loaded into the database. Move the images to the proper directory on that disk.

-62-

Data Reduction for the Deepsearch

If you are not on the master site (i.e. on the Deepsearch Suns and PCs at LBNL),
then the images will have been sent to the master site by the ltelescope procedure.
If you find you have to reload something into the database, and you are not on the
master site, it could be complicated. Talk to Rob, who will probably develop a way
to handle this after being asked to do something by hand a couple of times.

5.9 Cleaning Up After Yourself

Delete unnecessary files. Note that until you’re really sure that everybody’s happy
with the images, you might want to keep flatfield and other calibration files around.
That will make it much easier both to redo things, and to diagnose any problems in
the reduction. You may want to use the trick of giving the flatfield images names
that make it clear that they are flatfields for this particular night of data. (Give it
a name that looks something like the standard Deepsearch naming convention, with
enough other obvious stuff like “flat” or “super.”) Then, copy them into the deep
image path. They will be automatically backed up by Ivan’s and Rob’s image backup
system the next time anybody bothers to catch up with those backups.

(NOTE: If you are not on the master site, then you must explicitly copy anything
you wish to save to the Deepsearch PCs at LBNL. Just moving them to $DEEPIM-
AGEPATH at your site won’t do much good.)

For example: for the data from the BTC starting on the evening of 1999-April-10,
I copied the following files to $DEEPIMAGEPATH (where n is an integer between 1
and 4, representing the 4 chips of the BTC):

Original File File in DEEPIMAGEPATH

Iflat n.fits apr111999btcIdome n.fts
Rflat n.fits apr111999btcRdome n.fts
Isuper n.fits apr111999btcIsuper n.fts
Rsuper n.fits apr111999btcRsuper n.fts
Zeron.fits apr111999btcZero n.fts

-63-

