\relax \@writefile{toc}{\contentsline {section}{\numberline {1}Scientific Justification}{1}} \@writefile{toc}{\contentsline {subsubsection}{An Unprecedented SN\nobreakspace {}Ia Dataset to Measure Dark Energy}{1}} \@writefile{toc}{\contentsline {subsubsection}{Addressing Systematic Uncertainties with this Proposed Dataset}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces \relax \fontsize {10.95}{13.6}\selectfont \abovedisplayskip 11\p@ plus3\p@ minus6\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6.5\p@ plus3.5\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ {\leftmargin \leftmargini \topsep 9\p@ plus3\p@ minus5\p@ \parsep 4.5\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip \baselineskip 10pt {\it Left panel:} The SN Ia Hubble diagram for all low-extinction supernovae from Knop \emph {et al.}\ (2003). Supernovae within $z < 0.01$ of each other have been combined using a weighted average in order to more clearly show the quality and behavior of the dataset. The solid curve overlaid on the data represents our best-fit flat-universe model, $(\Omega _M, \Omega _{\Lambda }) =( 0.25, 0.75)$. Two other cosmological models are shown for comparison: $(\Omega _M, \Omega _{\Lambda }) =( 0.25, 0.0)$, and $(\Omega _M, \Omega _{\Lambda }) =( 1.0, 0.0)$. {\it Right panel:} The SNe\nobreakspace {}Ia Hubble diagram (on a log-redshift scale) for the SCP (Perlmutter \emph {et al.}\ 1999) dataset plotted according to the class of the host galaxy. The inset shows the high-redshift SNe, the main panel the Hubble diagram for the entire sample. Boxed points show SNe excluded from `fit-C' of Perlmutter 1999. Supernovae in elliptical/S0 host galaxies show significantly less scatter than those in later types. }}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces \relax \fontsize {10.95}{13.6}\selectfont \abovedisplayskip 11\p@ plus3\p@ minus6\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6.5\p@ plus3.5\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ {\leftmargin \leftmargini \topsep 9\p@ plus3\p@ minus5\p@ \parsep 4.5\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip \baselineskip 10pt {\em Left: } Confidence regions in the ($\Omega _M-\Omega _{\Lambda }$) plane from the 42 distant SNe\nobreakspace {}Ia in Perlmutter et al.\ 1999, overlaid with simulated contours illustrating the improvement in the determination of these parameters that will be possible on the timescale of this survey. The simulated 2-$\sigma $, 3-$\sigma $ (1D) contours (confidence levels as indicated) are based on three advances over the current results: 1) the full 5-year dataset of the proposed SNLS survey, 2) a dataset of 200 well-measured SNe\nobreakspace {}Ia from, for example, the Nearby Supernova Factory, and 3) a gaussian prior on $\sigma (\ensuremath {\Omega _M}) = 0.03$ (centered in the simulation on $\ensuremath {\Omega _M}= 0.28)$ reflecting the improvement anticipated from large scale structure and CMB measurements. {\em Right: } Confidence region in the ($\delimiter "426830A w \delimiter "526930B - \Omega _M$) plane, assuming a flat universe, from the 42 distant SNe\nobreakspace {}Ia in Perlmutter et al. 1999, overlaid with a simulated projected 1-$\sigma $ contour illustrating anticipated improvement. In this case, the simulation was based on only a mid-project SNLS dataset (300 SNe), along with the same assumptions as in Fig. 2 for the nearby SNe and the prior on $\Omega _M$. The simulation was done assuming $w=-0.8$ and demonstrates the ability to test whether a cosmological constant fits the data or if some other model of dark energy is required. }}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces \relax \fontsize {10.95}{13.6}\selectfont \abovedisplayskip 11\p@ plus3\p@ minus6\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6.5\p@ plus3.5\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ {\leftmargin \leftmargini \topsep 9\p@ plus3\p@ minus5\p@ \parsep 4.5\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip \baselineskip 10pt (a) Sample of supernova lightcurves from the first field searched by the SNLS (containing the Groth strip region). Note that this search was conducted during the instrument start-up period, and had less dense coverage then will be used for all future work. The lightcurve of SN 2003fl (dotted line) shows an example of a non-Type Ia, in this case a Type IIp SN. (b) Example of the multi-band observations that are being obtained for each supernova. (c) Example of the data available ``on the rise," i.e., around the time that a supernova candidate is triggered for Keck spectroscopy. }}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces \relax \fontsize {10.95}{13.6}\selectfont \abovedisplayskip 11\p@ plus3\p@ minus6\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6.5\p@ plus3.5\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ {\leftmargin \leftmargini \topsep 9\p@ plus3\p@ minus5\p@ \parsep 4.5\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip \baselineskip 10pt Spectrum of SNLS Type Ia supernova obtained using a DEEP EGS slit mask: The above spectrum as taken using a standard DEEP mask and spectrograph set-up, with a slit added at the location of the supernova. It is a good match to SN1999ee at 17 days after maximum light and redshift to z = 0.36 (overlaid red spectrum). No special rush was required to make this mask, which is partly responsible for the spectrum being so far after maximum. With slitmasks milled in Hawaii, the turn-around time could be just a few days, which for this SN would have resulted in a spectrum at maximum light.}}{4}} \@writefile{toc}{\contentsline {section}{\numberline {2}Progress to Date }{5}} \newlabel{sec:progtodate}{{2}{5}} \@writefile{toc}{\contentsline {section}{\numberline {3}Technical Justification}{6}} \@writefile{toc}{\contentsline {subsection}{Backup Programs}{7}} \@writefile{toc}{\contentsline {subsection}{Status of Previously Approved Keck Programs}{8}} \citation{kno03} \citation{40sne} \citation{first7} \citation{pain96} \citation{pain02} \citation{kim97} \citation{gold01} \citation{rie98} \citation{sn9784} \citation{ald00} \citation{sul02} \@writefile{toc}{\contentsline {subsection}{Path to Science from Observations}{9}} \@writefile{toc}{\contentsline {subsection}{Technical Concerns}{10}} \@writefile{toc}{\contentsline {subsection}{Experience and Publications}{10}} \@writefile{toc}{\contentsline {subsection}{Resources and Publication Timescale}{11}} \bibcite{ald99}{{1}{2000}{{Aldering \emph {et al.}}}{{}}} \bibcite{goo95}{{2}{1995}{{Goobar \& Perlmutter}}{{}}} \bibcite{ald98}{{3}{1998}{{Aldering \emph {et al.}}}{{}}} \bibcite{ald00}{{4}{2000}{{Aldering \emph {et al.}}}{{}}} \bibcite{gold01}{{5}{2001}{{Goldhaber \emph {et al.}}}{{}}} \bibcite{kim97}{{6}{1997}{{Kim \emph {et al.}}}{{}}} \bibcite{kno03}{{7}{2003}{{Knop \emph {et al.}}}{{}}} \bibcite{nob01}{{8}{2001}{{Nobili \emph {et al.}}}{{}}} \bibcite{pain96}{{9}{1996}{{Pain \emph {et al.}}}{{}}} \bibcite{pain02}{{10}{2002}{{Pain \emph {et al.}}}{{}}} \bibcite{first7}{{11}{1997}{{Perlmutter \emph {et al.}}}{{}}} \bibcite{sn9784}{{12}{1998}{{Perlmutter \emph {et al.}}}{{}}} \bibcite{40sne}{{13}{1999}{{Perlmutter \emph {et al.}}}{{}}} \bibcite{rie98}{{14}{1998}{{Riess \emph {et al.}}}{{}}} \bibcite{rie98a}{{15}{1998}{{Riess, \emph {et al.}}}{{}}} \bibcite{spe03}{{16}{2003}{{Spergel, \emph {et al.}}}{{}}} \bibcite{sul02}{{17}{2002}{{Sullivan, \emph {et al.}}}{{}}} \bibcite{ton03}{{18}{2003}{{Tonry, \emph {et al.}}}{{}}} \bibcite{Wel01}{{19}{2001}{{Weller \& Albright }}{{}}}