Status of Processing NIRI Images for SN 2001hb (Satie)

Rachel Gibbons

LBL

NIRI on Gemini North

Camera	I/0
Pixel Size	0′′1
Science Field of View	119
Array	Ala
Pixel format	102
Spectral Response	1 to
Dark Current	0.25
Dark Background	0.5
Read Noise (low background mode)	13 e
Read Noise (medium background mode)	50 e
Read Noise (high background mode)	200
Gain	12.3
Well depth (near-IR)	200
Well depth (thermal-IR)	280
Quantum efficiency	90%
Flat field uniformity	± 18
Flat field repeatability	$\pm 0.$
Residual image retention	0.5
	(sat
J-band zero-mag of a bright source	10.0
J-band background level (sky + scope)	50%

<u>c</u>ir 163 ddin InSb **4x1024 27** μm **5.5** µm 5 e-/s/pix e-/s/pix e-/pix e-/pix e-/pix 3 e-/ADU ,000 e-,000 e-) 8% 3% -1% of a bright turated) source)5 (80% well depth) **scope)** 50% **well in** 400 **s**

NIRI J-band Data Summary

 $J = 1.25 \ \mu m \ (1.15 - 1.33 \ \mu m)$ $z \ \sim \ 1.05 \ \rightarrow \text{rest frame V-band}$

14,15 May 2001 : bad 180 s exposure times saturate detector

16,17 May 2001 : bad weather

20,21,23,24 May 2001 : good 20 May \rightarrow 76 × 60 s = 4560 s **21 May** \rightarrow 151 × 60 s = 9060 s **23 May** \rightarrow 151 × 60 s = 9060 s **24 May** \rightarrow 142 × 60 s = 8520 s **Plus calibration stars**

Total 8 h 51 m (520 images) Average seeing $\sim 0^{\prime\prime}5$ for each night Total detection SNR = 15 (5-8 per night) within radius of $0^{\prime\prime}47$ (4 pixels)

Other Data ISAAC IR imaging

HST Follow-up in I and Z 4 WFPC2/F814W 1 WFPC2/F850LP Final references ACS/F850LP/F814W

Calibration flats (shutter open and closed)

- allow corrections dark current and thermal emission
- however, light path avoids mirrors affecting illumination variations compared to data frames
- night-to-night stability of 0.3%

Sky flats

- cannot correct for dark and thermal components
- dark current variations (timescale of hours) limit accuracy
- example dark (see figure \rightarrow)
- differences from "cal" flats can be 2 3% (see figure \rightarrow)
- large-scale pattern differences small compared to changes in dark current
- but found to better flatten data r.m.s. reduced by $\sim 1\%$
- built sky flats for each good night

NIRI software

(IRAF package) used to dark substract, gain correct, and flat-field

(see figure of raw frame \rightarrow) (see figure of sky-flattened frame \rightarrow)

Co-adding Images

wrote package in IRAF

Rough Pass Through Data: Bad Pixel Masks

- exclude images at beginning of each sequence (see figure \rightarrow)
- static mask defective pixels
- static mask vignetting by structure
- cosmic ray masks
 - rough sky subtraction using 4 adjacent images
 image shifts from cross-correlations of 6 brightest objects
 shift and median
 shift median back
 detect deviant pixels

Object Mask

- allows better sky-flat and better sky-subtraction
- shift and add
- detect objects
- shift masks back

```
(see figure \rightarrow)
```

Second Iteration Sky-subtraction
now without any cosmic ray contamination or source light

Second Iteration Shift Determination

• now without any cosmic rays

Finally Co-add

- discounting bad pixels
- sky-subtracted and co-added within nights first

Final Summed Image - 9 Hours

- used nightly co-adds to get shifts between 4 nights for final co-add (see figure →)
- FWHM more narrow than data fully reduced with IRAF GEMINI package
- do not have preliminary measurements, because have not done standard star photometry

Possible Problems to be Solved

- can see images are not dark subtracted or flattened well
- effect comparable to the sky noise level; perhaps local sky-subtraction around source works
- could build sky-flats with subsets of the data in each night
- may require some iterative process which minimizes the sky-residuals while allowing a scale factor on the dark and flat-field to vary
- but still how to know the image zeropoints are accurate? there are few standard star observations. (many nights, in fact, have none)
- reliable geometric distortion correction would require work may not be necessary if hostless (see figure →)

