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ABSTRACT

The redshift depth of a supernova search affects the precision of the cosmological parameter
measurements (Qar, Qa, Ok, wo, and wy where w = wo + zwq ). If the errors involved were purely
statistical, there would be no limit to how well the parameters could be measured. For any range
of redshift, a sufficiently large number of supernovae could be used to beat down the statistical
errors to any desired precision. In reality, there will be systematic errors that limit cosmological
parameter determination. In this note, we use simple models for the systematic errors to explore
their effect on parameter measurements as a function of limiting redshift.

1. Error Models and Parameter Determinations

In this Section, we consider measurements of the parameters Q,;, 24, and Q where the dark energy
is assumed to be the cosmological constant. An additional fit parameter corresponding to the absolute
magnitude of the Type Ia has been marginalized in our parameter determination. The errors considered
here are systematic limited, with the assumption that enough supernovae can be studied to make statistical
errors negligible.

1.1. Errors uncorrelated in redshift

There are two models of systematic error. The first are 100% correlated errors within each redshift bin,
0% correlation outside. In other words, in each redshift bin there is an irreducible systematic error drawn
from a Gaussian distribution independent of other redshift bins. K-correction error is a quasi-example of
this kind of systematic. The same K-corrections will be applied to supernova magnitudes at a single redshift;
their errors will be uncorrelated for very different redshifts.

Different systematic error sizes and evolution in redshift as well as differing redshift bin sizes have been
examined.
1. The redshift bin is 0.01 in size and there is an irreducible 0.02 magnitude error in each bin, uncorrelated

with the others. Referred to as “Case 17 (Figure 1).

2. There are 0.01 redshift bins with an error model of 0.02 % z/zp,4,. The magnitude uncertainty always
peaks to the same value at the limiting redshift (Figure 2).

3. There are 0.01 redshift bins with an error model of 0.02 x 2/1.7. The error for a given redshift is
independent of z.,., (Figure 3).
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Fig. 1.— The redshift bin is 0.01 in size and there is an irreducible 0.02 magnitude error in each bin,

uncorrelated with the others.
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Fig. 2.— There are 0.01 redshift bins with an error model of 0.02 * 2/ 24z
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Fig. 3.— There are 0.01 redshift bins with an error model of 0.02 x z/1.7.

The redshift resolution is fine enough so that changing the fundamental bin width is equivalent to
increasing the number of observed supernova. Figure 4 plots parameter errors from the first (constant) error
model with 0.03 redshift bins. Overplotted are the errors from Case 1 multiplied by v/3. The overlapping
lines show that 0.02 magnitude error in 0.03 redshift bins is identical to v/3 * 0.02 magnitude errors in 0.01
redshift bins.

It should be noted that the improvement in cosmological parameter determination with increasing
maximum redshift is not merely because we are using more supernovae. In Figure 5 we examine v/Ngy df)
as a function of redshift and find that it continues to decrease out to z = 2. A wider baseline in redshift
improves parameter determination beyond what is expected from simply the increased number of supernovae
used in the analysis.

1.2. Errors correlated in redshift

The second class of model is a completely correlated systematic magnitude shift. The errors in each
redshift bin are not drawn from a Gaussian distribution but are modeled as a linear function of redshift.
This model is motivated by systematic errors that may be expected to increase monotonically with redshift
(e.g. supernova evolution, Malmquist bias, gray dust). We determine the best cosmological fit given a linear
magnitude deviation from an input Q37 = 0.72, Q4 = 0.28 model for the following cases.

1. The deviation is 0.02%z/2,4,. The largest systematic error is scaled to the limiting redshift. (Figure 6.)
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Fig. 4.— The redshift bin is 0.03 in size and there is an irreducable 0.02 magnitude error in each bin,
uncorrelated with the others. Overplotted are v/3x Case 1 errors.
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Fig. 5.— +/Ngn df2 for Case 1. Note the continuing decrease over the redshift range considered.
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Fig. 6.— There is a systematic magnitude deviation given as 0.02 * z/2zmqz. The dzero line is M, the
normalized supernova absolute magnitude which is simultaneously fit.

2. The deviation is 0.02 x 2/1.7. That is, the systematic errors are independent of limiting redshift.
(Figure 7.)

2. Measuring wy and w;

Detailed measurements of the parameters that describe the dark energy require priors. In the following
analysis, we assume that Qs and Qj (and hence Q,) are known from independent experiments. The
supernova absolute magnitude is still marginalized. (A prior absolute magnitude improves w measurements
by a factor of two.)

Figures 8, 9, and 10 correspond to the three scenarios described in §1.1 where the errors are Gaussian
and uncorrelated between each redshift bin. Determinations of wg are an order of magnitude better than
wi. The advantage of moving to higher redshifts is less pronounced than for the measurements of Qs and
A and can be seen in the flattening at high redshifts of the curves in Figure 11.

The effect of systematic magnitude biases in redshift as in §1.2 for the measurement of w = wgy +
wi 2 is shown in Figures 13, 12. With increasing z,,,, neither uncertainties in wy nor w; grow strongly.
Determinations are at the level of 0.02 and 0.15 respectively for a background model close to a cosmological
constant. Errors are less for more positive equations of state since the dark energy retains its influence to
higher redshifts. Similarly, increasing 2, of the model would also reduce the uncertainties caused by the
systematic errors.
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Fig. 7.— There is a systematic magnitude deviation given as 0.02 x z/1.7.
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Fig. 8.— The redshift bin is 0.01 in size and there is
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Fig. 9.— There are 0.01 redshift bins with an error model of 0.02 * z/2mqz-
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Fig. 10.— There are 0.01 redshift bins with an error model of 0.02 * z/1.7.
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Fig. 11.— v/Ngn dw for Case 1. As compared to Figure 5 the power of an extended range to resolve wp and
wy flattens at high redshift (though it is comparable to that for ).

3. Conclusions

We first note the exceptional case of a systematic magnitude deviation given as 0.02 * z/1.7. Errors in
the cosmological parameters here increase since non-random errors steadily increase for greater z,,,,. The
degree of freedom in M steadily absorbs the mean magnitude shift while the cosmological parameters diverge
from their input values.

Parameter determination improves with larger z,,,, for all other systematic error scenarios, due to the
better leverage, increased “statistics”, and smaller errors for a fixed redshift. Within the range of models
explored, a 2,4 = 1.7 survey can in principle reach d2x = 0.01 — 0.03. Ground-based searches that target
Zmaz = 0.5 — 1.0 will do a factor of 5-10 worse. The same advantage exists but is less pronounced in the
measurements of wy and wy. A 2,4, = 1.7 survey can give dwg = 0.01 — 0.03 and dw; = 0.1 — 0.2 whereas
ground-based searches from z,,,, = 0.5 — 1.0 will do a factor of a few worse.

The particular nature of the systematic errors has not been determined. However, their magnitudes
will be constrained by the measurement of observable trackers of systematics such as light-curve rise time,
plateau levels, and spectral features.

The number of supernovae required to achieve the statistical limit is large. To achieve a 0.02 magnitude
bin uncertainty assuming ~ 0.1 statistical uncertainty in individual corrected Type Ia peak magnitudes
requires 25 supernovae. SNAP will have these statistics for 0.01 redshift bins from 0.8 < z < 1.2 in our
seventeen month baseline mission. This is independent of other systematics, such as gravitational lensing,
that will increase the observed magnitude dispersion.
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Fig. 12.— The systematic magnitude deviation is given by 0.02 % z/2maez. Qm = 0.28 and Q,, = 0.72 are
held fixed but M can vary, shown as dzero.
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Fig. 13.— The systematic magnitude deviation is given by 0.02 x z/1.7. £, = 0.28 and Q,, = 0.72 are held
fixed but M can vary, shown as dzero.



