First Principles of Cosmology
by Eric V. Linder
Table of Contents
PART 1. OVERVIEW
Chapter 1. Preliminaries
- 1.1 Vital Statistics
- 1.2 Units
- 1.3 Equivalence Principle
- 1.4 Metric
- 1.5 Homogeneity and Isotropy
- 1.6 Energy-Momentum Tensor
Chapter 2. Dynamics of the Universe
- 2.1 Friedmann Equations
- 2.2 History of Modern Cosmology
- 2.3 Equation of State
- 2.4 Density Evolution
- 2.5 Time Evolution
- 2.6 Fate of the Universe
Chapter 3. Cosmological Models
- 3.1 Cosmological Parameters
- 3.2 Classical Cosmological Tests
- 3.2.1 Lookback Time / Age Test
- 3.2.2 Distance Tests
- 3.2.3 Magnitude Test
- 3.2.4 Volume Test
- 3.2.5 Number Test
- 3.3 Discrimination of Models
- 3.3.1 Low Redshift
- 3.3.2 Moderate Redshift
- 3.3.3 Evolution
- 3.3.4 High Redshift
- 3.4 Summary of Classical Cosmological Tests
- 3.5 Other Cosmological Tests
- 3.5.1 Surface Brightness Fluctuations
- 3.5.2 Time Dependent Redshift
- 3.5.3 Period Test
- 3.6 Clumpy Universe Distances
Chapter 4. History of the Universe
- 4.1 Scaling
- 4.2 Temperature-Time-Redshift Relation
- 4.3 History In Brief
- 4.4 Planck Era
- 4.5 Baryogenesis
- 4.6 Neutrino Background
- 4.7 Inflation
- 4.7.1 Physics
- 4.7.2 Horizons
- 4.7.3 Flatness
PART 2. THREE CORNERSTONES
Chapter 5. Hubble Expansion
- 5.1 Observations
- 5.2 General Theory
- 5.2.1 Doppler Shift
- 5.2.2 Expansion Shift
- 5.2.3 General Expression
- 5.2.4 Four Observed Properties
- 5.2.5 Hubble Constant
- 5.3 Redshift Tests
- 5.3.1 Microwave Background Temperature
- 5.3.2 Surface Brightness
- 5.3.3 Olbers' Paradox
- 5.4 Alternate Theories
- 5.4.1 Doppler Shift
- 5.4.2 Tired Light
- 5.4.3 Photon Mass
- 5.4.4 Wolf Shift
- 5.4.5 Gravitational Shift
- 5.4.6 Summary
Chapter 6. Nucleosynthesis
- 6.1 Introduction
- 6.2 Thermodynamics
- 6.2.1 Thermal History
- 6.2.2 Interaction Equilibrium
- 6.2.3 Temperature-Time Relation Redux
- 6.2.4 Breakdown of Equilibrium
- 6.2.5 Entropy
- 6.3 Calculating Abundances
- 6.3.1 Helium Heuristically
- 6.3.2 Reaction Networks
- 6.3.3 Approximate Integration
- 6.3.4 Quasistatic Analysis
- 6.4 Observing Abundances
- 6.5 Inhomogeneous Nucleosynthesis
- 6.6 Constraints from Nucleosynthesis
- 6.6.1 Baryon Density
- 6.6.2 Neutrino Species
- 6.6.3 Component Densities
- 6.6.4 Varying Gravitation
- 6.6.5 Microwave Background Temperature
Chapter 7. Cosmic Microwave Background Radiation
- 7.1 Introduction
- 7.2 Recombination Physics
- 7.2.1 Recombination
- 7.2.2 Decoupling
- 7.2.3 Last Scattering Surface
- 7.3 Spectrum
- 7.3.1 Formation
- 7.3.2 Planck Function
- 7.4 Distortions
- 7.4.1 Bose-Einstein Distortion
- 7.4.2 Lines
- 7.4.3 Comptonization
- 7.5 Anisotropy Properties
- 7.5.1 Angular Scales
- 7.5.2 Correlation Function
- 7.5.3 Decompostion
- 7.5.4 Observations
- 7.6 Anisotropy Mechanisms
- 7.6.1 Dipole
- 7.6.2 Sachs-Wolfe Effect
- 7.6.3 Perturbations
- 7.6.4 Sunyaev-Zel'dovich Effect
- 7.6.5 Reionization
- 7.7 Early Universe Constraints
- 7.7.1 Gravitational Waves
- 7.7.2 Cosmic Strings
- 7.7.3 Inflation
- 7.8 Recent Universe Constraints
- 7.8.1 Cosmic Rays
- 7.8.2 Hubble Constant
PART 3. STRUCTURE
Chapter 8. Structure Formation
- 8.1 Linear Perturbation Theory
- 8.1.1 Newtonian and FRW Analogies
- 8.1.2 Perturbation Equations
- 8.1.3 Perturbation Solutions
- 8.2 Statistical Measures
- 8.2.1 N-point Correlations
- 8.2.2 Power Spectrum
- 8.2.3 Thermodynamic Function
- 8.3 Clustering
- 8.3.1 Zel'dovich Approximation
- 8.3.2 Adhesion Model
- 8.3.3 Environmental Effects
- 8.3.4 Biasing
- 8.4 Large Scale Flows
- 8.4.1 Peculiar Velocities
- 8.4.2 Dipole Alignment
- 8.5 Radiation Effects
- 8.5.1 Radiation Damping
- 8.5.2 Radiation Instability
- 8.5.3 Sachs-Wolfe Effect
Beyond the Horizon