HST Absolute Spectrophotometry of Vega from the Far-UV to the IR

R. C. Bohlin & R. L. Gilliland

- Approaches to astronomical flux calibration
 - Ground blackbody compared to
 - Vega
 - Sun
 - Other stars
 - Spectral models
 - Vega
 - Sun
 - White dwarfs

- Approaches to astronomical flux calibration
 - Ground blackbody compared to
 Vega → Hayes (1985) → SDSS
 Sun SN K-corrections
 - Other stars
 - Spectral models
 - Vega
 - Sun
 - White dwarfs

- Approaches to astronomical flux calibration
 - Ground blackbody compared to
 Vega → Hayes (1985) → SDSS
 Sun SN K-corrections
 - Other stars
 - Spectral models
 - Vega

Blackbody Calibration

- Alternate observations between Cu, Pt blackbodies, Tu lamp
 - (refs. Oke & Schild, Hayes & Latham, Tug, Terez & Terez, Knyazeva & Kharitonov)
- Problems
 - Different optical paths, atmosphere
 - Irreproducibility of Pt melting points
 - Instability of Tu lamp
- f₅₅₅₆ quoted uncertainty 1-2%, observed dispersion 4.4% (Megessier 1995)

Model Calibration

- Fundamental standard is the model for the objects in question, not cgs!
- Problems
 - Fundamental standard isn't stable in flux; as models change so do derived fluxes
 - Models wrong
 - Vega's observed IR excess is not predicted by Kurucz models to better than several percent.
 - Models don't include foregroud dust
 - Different models for the same object can look different

Differences in White Dwarf Models

Paper Purpose

- Use STIS to measure Vega on the HST White Dwarf flux scale
- Compare with Hayes flux calibration and Kuruncz model
- Establish HST Vega standard

• Approaches to astronomical flux calibration

