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Cosmic Concordance ===

Jaffe et al. (2000)
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Revolutions in Physics ,

Lord Kelvin (1900): Two clouds on the horizon
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Supernovae map expansion N
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Supernovae: Mapping Expansion m
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Supernovae: Acceleration N
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Supernova Cosmology 1 N
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Supernova Cosmology 2 N
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(cosmological constant)

Superncva Cosmology Project
Perimutter et al. (1998)
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Acceleration '

Einstein gravitation says gravitating mass

depends on energy-momentum tensor:
both energy density r and pressure p,
as r+3p

Negative pressure can give negative “mass”

Newton’s 29 [aw: Acceleration = Force / mass
R =-G (4p/3) (r+3p) R

Negative pressure can accelerate the expansion
LAWRENCE BERKELEY NATIONAL LABDEATDRY—



Negative pressure

Relation between r and p (equation of state)
IS crucial:

w=p/r

Acceleration possible for p < -(1/3)r or w <-1/3

What does negative pressure mean?
Consider 15t law of thermodynamics:
du=-p dV

But for a spring dU = +k xdx

or arubber band dU = +T dI
LAWRENCE BERKELEY NATIONAL LABDEATDRY—
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Dark Energy e

Acceleration of the universe can be caused
within general relativity by negative pressure.

This can be from a dark energy,

arising from the “springiness” of space,
l.e. from the quantum vacuum.

cf. Einstein, deSitter, Weyl 1910s-1920s.

Is this mysterious dark energy the original
cosmological constant, a quantum zeropoint
sea?

LAWRENCE BERKELEY NATIONAL LABDRATDRY—
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The Hunting of the Dark Energy

He had bought a large map representing the sea
Without the least vestige of land,
And the crew were much pleased when they found it to be

A map they could all understand.
-- Lewis Carroll, The Hunting of the Snark

Two flaws:

* The sea level should be 10120 times the height of
the land — it really should be a featureless seal

 The area of sea vs. land should evolve rapidly —

why do we see it as 70:30 not all one or the other?
LAWRENCE BERKELEY NATIONAL LABDRATDRY—



Cosmological Constant L

The energy scale of the vacuum needed to fit
observations of the dark energy density (the
sea level) is meV not M, ~ 10*° GeV

To try to correct the coincidence problem
(neither all land nor all sea today), the effective
mass of a varying quantum field must have a
Compton wavelength ~ size of universe

m ~ H, ~ 1/(10%6 cm) ~ 1033 eV

[L,=1033cm] /1044 cm =m /[10°GeV ]
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L Fails o

Other maps are such shapes, with their islands and capes,
But we've got our brave [captain] to thank

(So the crew would protest) that he's bought us the best —
A perfect and absolute blank.

-- Lewis Carroll, The Hunting of the Snark

Composition :
The universe is not simple: =

i gt | Baryons [atoms):
| comprising
1| stars, heavy
o, 8 || elements, and
* || helium and

| free hydrogen:
| ;

So maybe neither is the
guantum vacuum
(or gravitation?)

4.4%
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So... On Beyond L!

On beyond L! It’s high time you were shown
That you really don’t know all there is to be known.
--ala Dr. Seuss, On Beyond Zebra

How do we find dark energy models inspired by
fundamental physics?

How do we find the nature of dark energy through
observations?

e L AWRENCE BERKELEY NATIONAL LABORATORY m——



Dark Energy — Early Days

This 1S not new!

* High energy physics models — Linde 1986
« Cosmological probes — Wagoner 1986 (plots by EL)

« Cosmological observations — Loh & Spillar 1986

But observations were imprecise and inaccurate.
Galaxy counts showed W, » 1 but major
difficulties with evolution.

12 years passed...
LAWRENCE BERKELEY NATIONAL LABDEATDRY—



Dark Energy — The Discovery ,

Supernova Cosmology Project
Perimutter et al. (1998)
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Dark Energy — The Next Generation ,

Supernoval/Acceleration Probe: SNAP

Dedicated dark
energy probe

Discovery +12 years
LAWRENCE BERKELEY NATIONAL LABDRATDRY—




Fundamental Physics ,

Astrophysics ® Cosmology ® Field Theory
- _»f(z) ® Equation of state w(z) ® V()
“MB V(f(a(t)))

The subtle slowing and growth of scales with time

— a(t) — map out the cosmic history like the tree
rings map out the Earth’s climate history.

Map the expansion history of the universe

LAWRENCE BERKELEY NATIONAL LABDRATDRY—



Dark Energy at z > 1 ,

* Deep surveys of galaxies and SN to z>1
e Large scale structure formation
« CMB constraints from z,,,=1100

Robust parametrization: w(a)=w,+w_(1-a)
Community recognition: CMBfast, CMBeasy

Alterations to Friedmann framework ® w(z)

Friedmann equation:
H2 = (8p/3) r , + dH?(2)

Effective equation of state:

W(z) = -1 + (1/3) d In(dH2)/ d In(1+2) —



Supernovae Probe Dark Energy A\\

SNAP tightly constrains dark energy models.
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Complementarity ,

SNAP tightly constrains dark energy models...

And plays well with others.
o T N DA L R I R

SNAP+Planck
have excellent
complementarity,
equal to a prior
s(W,)£0.01.

: Frieman, Huterer, Linder, & Turner
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Fundamental Phvsics 2

A

SNAP tightly constrains dark energy models...

And pl
1

ays well with others. Lots of others.
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SNAP Complements SNAP ,

Wide, Deep and Colorful

* 9000 times the area of Hubble Deep Field
« 15 sg.deg. to AB mag R=30; 120 epochs

— 300 sg.deg. to AB mag R=28 —
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On Beyond L ,

Dark energy is...

e Dark Maybe not completely!
 Smooth on cluster scales Clumpy in horizon?
* Accelerating Maybe not forever!

It’s not quite so simple!

You'll be sort of surprised what there is to be found
Once you go beyond L and start poking around.

--ala Dr. Seuss, On Beyond Zebra
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The Zoo Beyond Zebra '

Motivation:

Because Iit’s there?!
More natural than cosm-illogical constant? o

Particle physics has zebrons, zebrillas, zebrinos...
Inflation has its hybrids, supernaturals, etc.

Quintessence has its mutations in attempt to make
physics more natural.

Simplicity vs. naturalness — epicycles
LAWRENCE BERKELEY NATIONAL LABDEATDRY—




nally?

Heart of Darkness cerceld] f

Is dark energy dark — only interacts gravitatio

Self Interaction:
Scalar fields have radiative corrections leadin
to self clumping: Qballs

P pseudoscalar quintessenc
Axion guintessence, PNGB

Coupling to matter: %‘

Leads to 5" force: limited by lab te

Unify dark energy with dark matter?
P Chaplygin gas

Distorts matter power spectrum: ruled out unless within 10>
of L

%stability
N\
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Heart of Darkness 2 ceeee] R
Coupling to gravitation:
Scalar-tensor theories

P Extended guintessence

Can clump on subhorizon scales
Can “turn on” from nonlinear structure formation?!

Higher dimension gravity
P Scalaron quintessence
Can be written in terms of scalar-tensor and w

Same game as early universe inflation — just want

to occur at late times, low curvature, potential, etc.
LAWRENCE BERKELEY NATIONAL LABDRATDR‘Y—



Heart of Darkness 3

For flat, Robertson-Walker metric
R=6(&a+a?a?)=6H2(1-q)
So acceleration related to Ricci scalar
W= —(1/3) (R/3H? — 1)
(also follows from R =-8pGT).

So acceleration for R > 3H%. But can’t get w4 by dR

like before with dH, since changes field equations.
S=0d*x Og[R+Ly]

Can get acceleration by

1. Change RHS T™, e.g. dark energy

2. Add terms in R, e.g. modify gravity

3. Couplings or imperfect fluid L,
LAWRENCE BERKELEY NATIONAL LABDEATDRY—



Phantoms, Strings, and Branes m

w < -1:
Phantom energy —why not allow 1t?

Requires non-canonical kinetic energy, e.g.
negative or nonlinear function.
k-essence, strings, branes

Ties to quantum gravity
e.g. vacuum metamorphosis

Fate of universe Is not deSitter but

superacceleration (if w stays <-1)
LAWRENCE BERKELEY NATIONAL LABDEATDRY—



History and Fate ,

! t l Mapping the
\ /1 history of the
08 | # 1 expansion tells us
o y 4 ] the fate of the
506 12 SN f/;:/ 1 universe —if very
.% : metamnrfh/// 1 precisely mapped.
©0.4 [ SNAP/ < 2 N
n T //// ;” ]
- H_ X_/‘ // Chaplygin (A=2/3) _
f ’f)ranéwor‘ld .
1 0.8 0.6 0.4 0.2 0
Lookback time Hjt
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Collapsing Universe

Work in collaboration with Renata Kallosh, Jan Kratochuvil,
Andrel Linde, Marina Shmakova

To map out use of observations to probe fate of
the universe, start with simplest model.

1 parameter linear potential
V() =V, +a Mp3f
Eventually V(f) <0 and universe collapses.

Inspired by supergravity models, fairly generic fit for
any collapsing model.

How long until cosmic doomsday?
LAWRENCE BERKELEY NATIONAL LABDRATDR‘Y—
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Linear Potential ,

These dark energy models look like L in the
past, but develop a strong w’.

tfuture
tfuture

llllllllllll a
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Cosmic Doomsday

By measuring w,, W, SNAP will be able to limit

the time until doomsday.

tdoom: ¥ (L)

tdoom > 28 Gyr
tdoom > 35 Gyr
tdoom > 35 Gyr
tdoom > 47 Gyr

95% SNA
95% SNA
68% SNA

68% SNA

1.5 — i’
- W, =2wW

]

D+CMB]

]

D+CMB]
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On Beyond... |

w’ is the 15t step for fundamental physics
beyond L.

Then w(z).
Eventually spatial variations C,Q ?

In our hunt for the dark energy, the data
decides how to go on beyond L.

SNAP[SN] + SNAP[WL] + CMB (+...) tells us if

In the places | go there are things that | see
That | never could spell if | stopped with the Z

-- Dr. Seuss, On Beyond Zebra
LAWRENCE BERKELEY NATIONAL LABDRATDR‘Y—



