

Physics of Cosmic Acceleration

2. Dark Energy as a Field

Eric Linder

II Tiomno School (Rio 2012)

UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea

Why not just bring back the cosmological constant (Λ)?

When physicists calculate how big Λ should be, they don't quite get it right.

They are off by a factor of

 $1,000,000,000,000,\\000,000,000,000,\\000,000,000,000,\\000,000,000,000,\\000,000,000,000,\\000,000,000,000,\\000,000,000,000,\\000,000,000,000,\\000,000,000,000,\\000,000,000,000.$

This is modestly called the fine tuning problem.

Why not just settle for a cosmological constant Λ ?

→ For 90 years we have tried to understand why Λ is at least 10¹²⁰ times smaller than we would expect – *and failed*.

→ We know there *was* an epoch of time varying vacuum once – inflation.

We cannot calculate the vacuum energy to within 10^{120} . But it gets worse: Think of the energy in Λ as the level of the quantum "sea". At most times in history, matter is either drowned or dry.

Λ: Ugly Duckling

- Fine Tuning Puzzle why so small?
- Coincidence Puzzle why now?

Theory of Fields

Scalar field:

At every point in a field of grass, you can measure the height of the grass: a single number or scalar h(x).

Vector fields:

At every point in a trampled field of grass, you can measure the length of the grass and the direction it is lying: a vector $\vec{g}(x)$.

"You'll be sort of surprised what there is to be found Once you go beyond Λ and start poking around." – Dr. Seuss, à la "On Beyond Zebra"

New quantum physics? Does nothing weigh something? Einstein's cosmological constant, Quintessence, String theory

New gravitational physics? Is nowhere somewhere? Quantum gravity, extended gravity, extra dimensions?

We need to explore further frontiers in high energy physics, gravitation, and cosmology.

Finding Our Way in the Dark

Dark energy is a completely unknown animal.

A new theory or a new component?

Track record:

Inner solar system motions \rightarrow General Relativity Outer solar system motions \rightarrow Neptune Galaxy rotation curves \rightarrow Dark Matter

Nature of Acceleration

Is dark energy static? Einstein's cosmological constant Λ .

Is dark energy dynamic? A new, time- and spacevarying field.

Is dark energy a change in gravity?

How much dark energy is there? Ω_{DE} How springy/stretchy is it? w=P/ ρ A new law of gravity, or a new component? G_N(k,z) **Scalar Field Theory**

Scalar field Lagrangian canonical, minimally coupled

$$\mathcal{L}_{\phi} = (1/2)(\partial_{\mu}\phi)^2 - V(\phi)$$

Noether prescription → Energy-momentum tensor

$$T_{\mu\nu}=(2/\sqrt{-g}) [\delta(\sqrt{-g} \mathcal{L})/\delta g_{\mu\nu}]$$

Perfect fluid form (from RW metric)

Energy density $\rho_{\phi} = (1/2) \dot{\phi}^2 + V(\phi) + (1/2)(\nabla \phi)^2$ Pressure $p_{\phi} = (1/2) \dot{\phi}^2 - V(\phi) - (1/6)(\nabla \phi)^2 + (1/2)(\nabla \phi)^2$ **Scalar Field Equation of State**

Equation of state ratio

w = p/ρ

Klein-Gordon equation (Lagrange equation of motion)

 $\ddot{\phi} + 3H\dot{\phi} = -dV(\phi)/d\phi$

Continuity equation follows KG equation $[(1/2)\dot{\phi}^2] + 6H [(1/2)\dot{\phi}^2] = -\dot{V}$ $\dot{\rho} - \dot{V} + 3H (\rho + p) = -\dot{V}$ $d\rho/d/n a = -3(\rho + p) = -3\rho (1 + w)$ $\rho_i(a) = \rho_i e^{-3\int_0^{\ln a} d\ln a' [1 + w_i(a')]} \sim a^{-3(1 + w_i)}$

Limits of (canonical) Equations of State: w = (K-V) / (K+V)Potential energy dominates (slow roll) $V >> K \Rightarrow w = -1$ Kinetic energy dominates (fast roll)

 $K >> V \Rightarrow w = +1$

Oscillation about potential minimum (or coherent field, e.g. axion)

 $\langle V \rangle$ = $\langle K \rangle$ \Rightarrow w = 0

Examples of (canonical) Equations of State:

dρ/d*In* a = -3(ρ+p) = -3ρ (1+w)

ρ = (Energy per particle)(Number of particles) / Volume
 = E N a⁻³

Constant w implies $\rho \sim a^{-3(1+w)}$

Matter: $E \sim m \sim a^0$, $N \sim a^0 \rightarrow w = 0$

Radiation: $E \sim 1/\lambda \sim a^{-1}$, $N \sim a^{0} \rightarrow w = 1/3$

Curvature energy: $E \sim 1/R^2 \sim a^{-2}$, $N \sim a^0 \rightarrow w = -1/3$

Cosmological constant: $E \sim V$, $N \sim a^0 \rightarrow w=-1$

Anisotropic shear: w=+1 Cosmic String network: w=-1/3 ; Domain walls: w=-2/3

Scalar fields can roll:

- 1) fast "kination" [Tracking models]
- 2) slow acceleration [Quintessence]
- 3) steadily acceleration deceleration [Linear potential]
- 4) oscillate potential minimum [V~ φⁿ], pseudoscalar, PNGB (Frieman, Hill, Stebbins, Waga 1995)

Reconstruction from EOS:

$$\rho(a) = \Omega_{\phi} \rho_{c} \exp\{3 \int dln \ a \ [1+w(z)]\}$$

$$\phi(a) = \int dln \ a \ H^{-1} \ sqrt\{ \rho(a) \ [1+w(z)] \}$$

$$V(a) = (1/2) \ \rho(a) \ [1-w(z)]$$

$$K(a) = (1/2) \ \dot{\phi}^{2} = (1/2) \ \rho(a) \ [1+w(z)]$$

But, $\dot{\phi} \sim \sqrt{[(1+w)\rho]} \sim \sqrt{(1+w)} HM_p$ So if 1+w << 1, then $\Delta \phi \sim \dot{\phi}/H << M_p$. It is very hard to directly reconstruct the potential. Goldilocks problem: Dark energy is unlike Inflation!

Equation of motion of scalar field

- $\ddot{\phi} + 3H\dot{\phi} = -dV(\phi)/d\phi$
- driven by steepness of potential
- slowed by Hubble friction

Broad categorization – which term dominates:

- field rolls but decelerates as dominates energy
- field starts frozen by Hubble drag and then rolls
 Freezers vs. Thawers

Limits of Quintessence

Entire "thawing" region looks like $\langle w \rangle = -1 \pm 0.05$. Need w' experiments with $\sigma(w') \approx 2(1+w)$.

Calibrating Dark Energy

But we can calibrate w' by

"stretching" it: $w' \rightarrow w'(a_*)/a_*$.

Models have a diversity of behavior, within thawing and freezing.

Calibrated parameters w₀, w_a. 0.6 PNGB 0.4 - LinPot 0.4 DGP/H^{α} ϕ^4 Braneworld 0.2 0.2 ----- SUGRA $w_{a}^{(d)} = -w'(a_{*})/a_{*}$ `∧ 0 0 -0.2-0.2-0.4-0.4de Putter & Linder JCAP 0808.0189 -0.6-0.9-0.5-0.8-0.7-0.6-1 -0.95-0.9-0.85-0.8-0.75w_o

The two parameters w_0 , w_a achieve 10⁻³ level accuracy on observables d(z), H(z).

 $w(a) = w_0 + w_a(1-a)$

This is from physics (Linder 2003). It has *nothing* to do with a Taylor expansion.

Solving the Equation of Motion

Klein-Gordon equation
$$\ddot{\phi} = -3H\dot{\phi} - \frac{dV}{d\phi}$$

Transform to new variables $x \equiv \frac{\kappa\dot{\phi}}{\sqrt{6}H}$; $y \equiv \frac{\kappa\sqrt{V}}{\sqrt{3}H}$ $' = \frac{d}{d\ln a}$
 $H^2 = (\kappa^2/3)[\rho_m + (1/2)(\dot{\phi})^2 + V]$
Autonomous $x' = -3x + \lambda\sqrt{\frac{3}{2}y^2 + \frac{3}{2}x} [2x^2 + \gamma (1 - x^2 - y^2)]$
system $y' = -\lambda\sqrt{\frac{3}{2}xy + \frac{3}{2}y} [2x^2 + \gamma (1 - x^2 - y^2)]$,
where $\kappa^2 = 8\pi G$; $\gamma = 1 + w_b$; $\lambda = \frac{-V_{,\phi}}{\kappa V}$
Copeland, Liddle, Wands 1998
Phys. Rev. D 57, 4686
Transform solution to $\Omega_{\phi} = x^2 + y^2$; $w = \frac{x^2 - y^2}{x^2 + y^2}$

Can add equation for EOS dynamics

$$w' = -3(1 - w^2) + \lambda(1 - w)\sqrt{3(1 + w)\Omega_{\phi}}$$

Caldwell & Linder 2005 Phys. Rev. Lett 95, 141301

Equation of State Dynamics

2û

21

For robust solutions, pay attention to initial conditions, shoot forward in time, use 4th order Runge-Kutta.

For monotonic Ω_{ϕ} , can switch to Ω_{ϕ} as time variable, defining present as, e.g. Ω_{ϕ} =0.72.

Asymptotic behaviors can be physically interesting. Solve for critical points $x'(x_c,y_c)=0$, $y'(x_c,y_c)=0$. Check stability by sign of eigenvalues $\delta p'=Mp$. $p=\{x,y\}$

Copeland, Liddle, Wands 1998 Phys. Rev. D 57, 4686

Relevant to fate of universe.

Crossing w=-1: $y = \frac{\kappa\sqrt{V}}{\sqrt{3}H}$ so $y'_c = 0 \Rightarrow$ $\frac{V'}{V} = 2\frac{H'}{H} \equiv -3(1+w_{\text{tot}})$

Phantom fields roll up potential so V'>0, so w_{tot}^{∞} <-1. Cannot cross w=-1 even with coupling. Quintessence can cross with coupling since w<w_{tot}.

"Normal" potentials don't work:

 $\mathsf{V}(\phi) \thicksim \phi^n$

have minima (n even), and field just oscillates, leading to EOS

w = (n-2)/(n+2)n 0 2 4 ∞ w -1 0 1/3 1

Oscillating field

Turner 1983

Take osc. time << H⁻¹ and ρ constant over osc. $\langle \dot{\phi}^2 \rangle = \int dt \ \dot{\phi}^2 / \int dt = \int d\phi \ \dot{\phi} / \int d\phi / \dot{\phi}$ $= 2\rho \int d\phi [1-V/V_{max}]^{1/2} / [1-V/V_{max}]^{-1/2}$ If V = V_{max}(ϕ / ϕ_{max})ⁿ then $\langle w \rangle = -1 + 2 \int_0^1 dx (1-x^n)^{1/2} / \int_0^1 dx (1-x^n)^{-1/2}$ = -1 + 2n/(n+2)

Tracking fields

Criterion $\Gamma = VV''/(V')^2 > 1$, d In (Γ -1)/dt <<H.

However, generally only achieves $w_0 > -0.7$.

Successful model requires fast-slow roll.

Observations that map out expansion history a(t), or w(a), tell us about the fundamental physics of dark energy.

Alterations to Friedmann framework $\rightarrow w(a)$ Suppose we admit our ignorance:

 $H^2 = (8\pi/3) \rho_m + \delta H^2(a)$

gravitational extensions or high energy physics

Effective equation of state:

 $w(a) = -1 - (1/3) dln (\delta H^2) / dln a$

Modifications of the expansion history are equivalent to time variation w(a). Period.

For modifications δH^2 , define an effective scalar field with

- $V = (3M_P^2/8\pi) \, \delta H^2 + (M_P^2H_0^2/16\pi) \, [d \, \delta H^2/d \, In \, a]$
- K = (M_P²H₀²/16π) [d δ H²/d *In* a]

Example: $\delta H^2 = A(\rho_m)^n$

w = -1+n

Example: $\delta H^2 = (8\pi/3) [g(\rho_m) - \rho_m]$

w= -1 + (g'-1)/[g/p_m - 1]

Are We Done?

 $w = -1.013^{+0.068}_{-0.073}$ (stat+sys)

Dark energy is very much *not* the search for one number, "w".

Dynamics: Theories other than Λ give time variation w(z). Form w(z)=w₀+w_az/(1+z) accurate to 0.1% in observable.

Degrees of freedom: Quintessence determines sound speed $c_s^2=1$. Barotropic DE has $c_s^2(w)$. But generally have w(z), $c_s^2(z)$. Is DE cold ($c_s^2 <<1$)? Cold DE enhances perturbations.

Persistence: Is there early DE (at z>>1)? $\Omega_{\Lambda}(z_{CMB})\sim 10^{-9}$ but observations allow 10⁻².

Current constraints on c_s using CMB (WMAP5), CMB × gal (2MASS,SDSS,NVSS), gal (SDSS).

but consistent with Λ within 68% cl.

cf. generalized DE Hu 1998

Early DE density parametrized by Doran & Robbers 2006 form. (Note $\Omega_{\Lambda}(z=10^3)\sim 10^{-9}$.)

Perturbations by sound speed $c_s^2=dp/dp$. Quintessence has $c_s^2=1$. Largest effect for smallest $c_s^2 -$ "cold dark energy".

Finally, anisotropic stress c_{vis}≠0 (Hu 1998).

Early, Cold, Stressed Dark Energy

Perturbations enhanced by lowering sound speed c_s^2 (from 1) and suppressed by raising stress c_{vis}² (from 0).

Enhanced perturbations strengthen gravitational potential, so reduce photon Sachs-Wolfe power and enhance ISW.

Calabrese, de Putter, Huterer, Linder, Melchiorri 2011

Early, Cold, Stressed Dark Energy

Also affects CMB lensing.

New degrees of freedom can be detected; testing consistency difficult.

Does not degrade other parameters.

Exercise 2.1: Solve the dynamics for a DBI scalar field

$$\mathcal{L}_{\phi} = -V(\phi)\sqrt{1-\dot{\phi}^2}$$

see Abramo & Finelli 2003

$$H^{2} = \frac{\kappa^{2}}{3} \left[\rho_{m} + \frac{V(\phi)}{\sqrt{1 - \dot{\phi}^{2}}} - V(\phi) \sqrt{1 - \dot{\phi}^{2}} \right]$$

For resources on dark energy as a field, see

Copeland, Sami, Tsujikawa 2006, Dynamics of Dark Energy http://arxiv.org/abs/hep-th/0603057 and the references cited therein.