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Abstract
Certain Type Ia supernova spectral features have theoretically been found to probe progemitor initial
conditions. We introduce a model for the spectral features and determine the signal-to-noise necessary in the
spectrum to measure the relevant parameters to the accuracy targeted by SNAP. Possible variations in the
definition of spectral depth, width, and position for different choices of model are explored.

Preface

The results of this section are somewhat of a preliminary nature for several reasons: The detector design
specifications have not been finalized and are subject to revision. The systematic analysis is based on only
six supernova flux data sets; hence only a rough estimate of the systematic uncertainty is achieved. However,
more data sets are expected to become publicly available within a year. Finally, the analysis of the Call
features as not available in time for this report.

Introduction

The spectrum of a supernova contains considerable information about the physics of the stellar explo-
sion. This information is encoded in a subtle way that is gradually being unraveled. Certain features such as
troughs and peaks in the supernova flux are associated with P-Cygni profile spectra of elements. By measur-
ing the features, it is possible to constrain the initial conditions, the subsequent dynamics, and chemistry of
the explosion. Current theoretical models of type Ia supernovae are able to provide approximate correlations
between changes in the physical conditions and the peak luminosity (Hoflich, Wheeler, & Thielemann, 1998).

Some quantities that can be deduced from spectral features are the speed of the different elements in
the ejecta, the opacity of inner layers, the metallicity of the progenitor, the **Ni mass, and the distribution
of the 56Ni. These quantities are related to the dynamics of the explosion as follows: The speed of the ejecta
is a measure of the kinetic energy of the explosion; the opacity affects the overall light curve shape; the
metallicity of the progenitor plays a role in the character of the spectrum at early times; the *6Ni mass is
an indicator of the total luminosity; and the 56Ni distribution leads to small distortions of the light curve
shape in the early development stage.

Three parameters have been selected to characterize a feature: the location of the local minimum or
maximum of the flux, the width of the structure, and the height/depth of the structure. Table 4.4 of the
SNAP proposal dated December 15, 2000 provides the accuracy required to measure these three parameters
so that the error in the magnitude at maximum luminosity is less than 0.02.

The character of the host galaxy affects in part the age, metallicity and certain other properties of the
supernova progenitor. More specifically, luminosities, colors, morphology and location within the galaxy
allow one to estimate certain initial stellar conditions. Table 4.6 of the SNAP proposal lists observables
that one would like to measure to constrain the progenitor environment. With this information, it will be
possible to divide type Ia supernovae into groups, such that each supernova member arises from a similar
environment. Light curve stretches, rise times, tails and peaks also provide information about 6Ni mass, *® Ni
distribution, kinetic energy, and opacity of the explosion; these correlations are outlined in Table 4.5 of the
SNAP proposal. See Branch, Romanishin, & Baron (1996) for more details. In summary, by combining host
galaxy properties and light curve measurements with supernova spectral features, one is able to determine
more accurately the physics of the supernova and to monitor possible changes in population as a function of
redshift.

It is easy to understand why feature locations correlate with the kinetic energy of the ejecta. Ejecta
that are moving toward earth are slightly blue-shifted compared to ejecta that are moving away from earth.
Thus spectral line locations are a measure of velocities of supernova elements.

Likewise, the width of a feature is determined in part by the variation in velocity of ejecta. Ejecta that
are traveling perpendicular to the line of sight to the supernova are not blue shifted, while ejecta that are
traveling at the earth or at an angle to the line of sight are. Thus spectral lines are blue shifted by differing
amounts leading to a smearing of a line of approximately (15,000 km/s )/c = 5% in the rest frame. For
the SiIl feature near 6000 A, this analysis predicts a width of about 300 A, which is indeed roughly what is
observed. Similarly, the width of the Call feature near 4000 A should be about 200 A.
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The depth or height of a feature correlates with optical depths. When more material is present (due
to a wider or denser envelope) more absorption occurs for radiation passing through the ejecta and more
emission arises for radiating elements. It has been argued and empirically shown that the ratio of heights of
certain features is a luminosity indicator (Nugent et al., 1995). Recent analysis by Peter Nugent reported
at the May 2001 SNAP workshop indicates that the Sill height ratio is a better luminosity indicator than
the Call height ratio. The Sill ratio might provide a “standard candle” method that is competitive with
stretch.

The rest of this section determines how different uncertainties affect the determination of spectral feature
parameters. The uncertainties considered here are (1) statistical errors due to the detector and backgrounds,
(2) systematic errors due to imprecisions in the definitions of heights and widths, and (3) a linear bias of
flux measurements, e.g. due to error in the calibration.

The Effects of Statistical Errors on Spectral Feature Parameters

The error bars on data arise from detector noise, backgrounds, and the source itself. The former are
generated from dark currents 444, and from readout noise d,¢q40ut- The sky and host galaxy are background
sources. In addition, the accuracy of data measurements improves with the intensity of the supernova flux.
These five contributions lead to the variance 02,,, of a data point (pixel) that is approximately

2 2 -
Odata = nimageséreadout + tobstdark + tabsA)‘(]:SN + fgalazy + fsky) )

where t,45 is the total observation time in seconds, Mjmqges iS the number of exposures taken, A\ is the
wavelength width in Angstroms of the bin of the data point, and Fsn, Fyaiazy and Fpy are fluxes of
respectively the supernova, the host galaxy and the sky expressed in machine units, i.e., electrons per second
per Angstrom of wavelength. For the HgCdTe detector, igqrx = 0.017 electrons per second and 6reqqout = 6
electrons. For the optical detector, ige-x = 0.0013 electrons per second and 6,¢040ut = 4 electrons. The
signal in a bin in electron counts is t,ps FsnAA.

The signal to noise tops FSNAA/Odqtq is determined from the information in the above paragraph. The
three fluxes Fsn, Fyatazy and Fsry for SNAP are generated from simulations written by Alex Kim. Since
these fluxes are subject to revision, the results presented below are preliminary. The errors on data points
depend on four variables: tops, Nimages; AX and the redshift z of the supernova (because the supernova and
galaxy fluxes vary in distance and are redshifted). Thus, the statistical uncertainty on supernova spectral
parameters depends on these four parameters.

Briefly, the method used to determine the statistical errors in the heights and widths is as follows:
After shifting the location of the minimum or maximum to the origin, a fit f(\) to the flux was done in a
feature region of a template type Ia supernova. Then errors in data points were incorporated. Suppose new
data points are generated by Monte Carlo within the specified errors. A fit of the form af((A —¢)/b) can be
performed to the new data where a, b, and ¢ correspond to the height/depth, width, and wavelength position
respectively. A common approach to determining this uncertainty is by Monte Carlo methods: simulated
data is generated repeatedly and the variances in the output spectral parameters is recorded. Since the values
of tops, Nimages and AX have not yet been fixed for SNAP, Monte Carlo runs would have to be performed
for a range of these three parameters. This would involve considerable CPU time. The same is true for
numerical packages that deal with this problem such as those contained in the CERN package MINUIT.
Instead, we have used an efficient analytic approach that is described in an Appendix below.

Two features have been analyzed: Sillr near 6135 A and SiIll near 5775 A for a supernova with z = 1.6
at four days after peak luminosity as recommended by Peter Nugent in the 2001 SNAP Simulation Workshop.
The studies of the features at Callr near 3930 A and Calll near 3585 A will be performed at a future date.
According to the Peter Nugent at the 2001 SNAP workshop, the Sill region is more useful than the Call
region as a luminosity indicator.

We have generated results (i) keeping the binwidth and exposure time t.,, fixed while varying the total
observation time tops (tobs = tewpTimages), (i) keeping t,ps and nimages fixed while varying the bin width
A), and (iii) keeping t.,, and A fixed while varying nimages (and hence ;). Space limitations do not
allow us to present all these results. The following represents typical uncertainties. They are generated for
the case AN/(1+2) =~ 10 A, and t,p, ~ 20 hours via ten exposures each of two hour duration (Nimages = 10
and te;p = 2 hours). Since we are not instrument noise limited, for case (i), the fractional errors go down
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roughly as 1/+/topsAX. Errors also go down as the binwidth is made larger because the errors due to the
detector are relatively smaller.

For Sillr near 6135 A, the uncertainties in height, width and location are respectively about 2.5%, 6.5%
and 3.5 A. For Silll near 5775 A, results depend on whether the feature is deep or shallow and whether its
shape is known. For some supernovae, the Silll feature is almost as pronounced as the one at 6135 A. In
this case, one can expect the uncertainties to be about the same as for the Sillr case above. However, when
the Silll feature is not very salient, then the uncertainties in height, width and location are respectively
about 2%, 22% and 10 A, if the shape of the feature is known. If the shape of the feature is not known, the
uncertainty in measuring the height should be about 10%.

The following are two examples of simulated SNAP data of supernova features. The vertical axis
represents supernova flux in arbitrary units. The horizontal axis is wavelength in Angstroms. Error bars
were provided by Alex Kim under the assumption of ten exposures of two hours each (an observation of 20
hours total). Results are shown in the supernova rest frame by redshifting the wavelength by (1 + z) = 2.6,
and the experimental binwidth was 26 A. The curves are fits to the data.

5933 6033 6233 6333

Figure 1. The Sill feature near 6125 A. The statistical errors in the simulated data lead to values of the
height, width and minimum location that are respectively 4% more, 4% more and 5 A more than the case
of perfect data with zero statistical errors.

5500 5600 5800 5900

Figure 2. The SiIll feature near 5775 A for a shallow feature case. The statistical errors in the simulated
data lead to values of the height, width and and maximum location that are respectively 0.2% lower, 14%
lower and 0 A more than the case of perfect data.

Two parameters of particular interest are the Silicon II ratio height R(SilI) and the Silicon IT velocity
V(SiII). They already have been observed to vary systematically in type Ia supernovae. The spectral require-
ments of a 0.02 magnitude uncertainty, which were provided by Peter Nugent in the 2001 SNAP Simulation
Workshop, are that R(SilI) be accurate to 4% and that V(Sill) be accurate to 2000 km/s. Assuming no
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intrinsic dispersion, the later translates into the requirement that the location error of the minimum be less
than 40 A, which is easily satisfied. The height of a single SiIl feature should be measured to about 3%.
For the case of a deep Silll feature, 10-hour exposures are needed. This corresponds to a signal-to-noise
of roughly 12 in each 15A pixel bin over the feature. For the case of a weak feature, it will be difficult to
measure R(Sill) to the required accuracy unless Silll has a universal shape.

Systematic Effects

The above results might depend on the template type Ia supernova used for producing the fitting
function f. The issue, here, is related to the problem of defining the height and width of a feature. Several
reasonable definitions are possible. This leads to a systematic error in the feature parameters.

There is no standard method for determining this systematic error. The following is the way we ap-
proached the problem.

Let fo denote the original fitting function referred to as f above. Six additional type Ia supernova spectra
were considered, and each was fit with a function f;. These six fitting functions were scaled (shifted and
stretched both horizontally and vertically) to match as best as possible the original fitting function fy. Each
of the six fitting functions was used to measure the height, width and location of the minimum/maximum
by using the form af;((A — ¢)/b) to fit five other data sets that are generated from the f; at a wavelength
interval of AX. The value of 10 A was used for AX. The variations in a, b and ¢ were noted and used to
estimate the systematic uncertainty in height, width and location of the feature.

For heights, an additional method of estimating the systematic uncertainty was used. Two heights may
be determined from each feature of a spectrum: the distance h; from the minimum (or maximum) to the
left shoulder and the distance h, from the minimum (or maximum) to the right shoulder. The quantity
|hi — hr|/(hi + hy) when averaged over different spectra is a measure of the systematic uncertainty in height.
Below we refer to this as the shoulder variation method.

The analysis was not done for the Calll peak near 3585 A because not enough type Ia supernova data
sets were available.

The following is a summary of the approximate systematic errors in height, width and location of the
two features Sillr near 6135 and Callr near 3930 A.

For Sillr near 6135 A:

Systematic uncertainty in the location of the minimum is about 2.5 A
Systematic uncertainty in width is about 6%

Systematic uncertainty in height is about 5%

Systematic uncertainty in height is about 5% using shoulder variation method

For Callr near 3930 A:

Systematic uncertainty in the location of the minimum is about 2 A
Systematic uncertainty in width is about 12%

Systematic uncertainty in height is about 24%

Systematic uncertainty in height is about 28% using shoulder variation method

A number of things are worth commenting on: (a) There is little systematic uncertainty in the min-
ima/maxima locations, as one might expect: there is little ambiguity in what one means by a minimum or
maximum. (b) The large uncertainty in the feature Callr near 3930 A arises because the feature appears
on a “steep slope”. (c¢) The systematic uncertainty of the Sillr heights are the order of 5%. This is approx-
imately the same variation as seen by Peter Nugent and collaborators in using the Sill height ratio as a
luminosity indicator. (d) If the systematic uncertainty in the Sill height ratio is 5%, one cannot expect it to
be used more accurately as a luminosity indicator. It is possible that a more accurate luminosity indicator
is “buried” in the feature and that the height ratio only approximates it. It is also possible that the height
ratio is the best luminosity feature indicator but has an intrinsic uncertainty of about 5%. (e) The function
fitting method and the shoulder variation method are in agreement. (f) Since seven spectral data sets is not
a large sample, the above results should be regarded as preliminary.

Effects of a Linear Bias on Spectral Feature Measurements

In this section, we examine the effect of a possible linear calibration bias. If fluzirye and fluzoutputted
are respectively the true supernova flux and the calibrated output flux, then the error in the measured flux
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is
(Sfl’LLSL' = fluxtrue - fluxoutputted R a+ ;8 *A o,

where « and (3 are small coefficients characterizing the bias and A is the wavelength. SNAP aims to calibrate
the detector with sufficient accuracy so that the linear bias will be less than about 1% per 10,000 A.

The bias affects the measurements of the parameters characterizing spectral features. It is straight-
forward to determine the distortion of the height, width and location of a feature caused by a and S.
Constraints on the measured accuracy of feature parameters are provided in Table 4.4 of the SNAP proposal
dated December 15, 2000.

It turns out that these constraints lead to the requirement that 8 be less than a few percent per 100 A.
This is about 100 times less stringent than SNAP design goals (which were chosen for other criteria). Thus,
a linear bias at the designed level will not affect the determination of spectral-feature parameters.

Appendix: An Analytic Method of Determining the Variances in Fitting Parameters that
Arise from Error Uncertainties in Data

Suppose {z;,y;} for i = 1,2,..., Nga, are the expected “perfect” data points from some planned
experiment. In the real experiment, errors associated with the data will arise. Suppose f(z;, a,) is a function
that fits the data (f(z;,ar) =~ y;) and that depends on a set of parameters a,, 7 = 1,2,..., Npgrameters-
These parameters could be important outputs that the experiment would like to measure accurately. The
error uncertainties in data lead to uncertainties in the output parameters a,.. One is interested in determining
the error bars for the a,.

A standard way to proceed is by Monte Carlo methods, that is, to generate lots of simulated data and
to examine the variation in the output parameters. This is a straightforward approach that involves the
writing of computer programs and performing the number-crunching.

Due to machine design issues and future technological improvements, the values of the errors may
change. In such a case, a Monte Carlo run must be performed for each case. Depending on the number of
different situations, considerable computer time and programming may be needed.

In the analysis of the SNAP spectral features, we have used a more efficient analytic approach that is
described in this Appendix. If the data errors are sufficiently small, the variance Jgr is linearly dependent
on the variances o2 of the data:

Niata

2 § i 2
O'ar - CaTO'Z- —+ ... ;
i=1

where +... indicates terms of order ¢} or higher (o or higher if the error distribution is skewed). If the
coefficients C’};T can be determined then the errors in output parameters can be readily computed.
The analytic approach has the following advantages over the Monte Carlo method:
(1) It can involve considerably less computer time.
(2) No testing for convergence of the simulation is needed.
(3) Examination of the coefficients C? ~allows one to determine where to concentrate one’s experimental
efforts to minimize the errors in output parameters.
4) The method works for arbitrary data error distributions P;(e;).

The disadvantages of the analytic approach compared to the Monte Carlo method are:
(1) The formulas for the coefficients C};T become complicated as the number of parameters Npsrometers
increases.
(2) The method is inaccurate if the error bars on the data are large (i.e., the terms omitted in the above
equation of o2 are important). However, if the error bars are so large as to render the analytic method
ineffective, one should probably rethink how the experiment is conducted.

The analytic approach has connections with imaginary-time Feynman path integrals that are used in
quantum mechanics and field theory. Indeed, a discrete functional integral arises. Suppose the experimental

data points y;°? are related multiplicatively to ideal data points y; by

K2
v =yi(1+€)
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Then the measure for the errors is
Naata

H P,' (ei)dei
i=1

If the data error distributions P;(e;) are normally distributed, then a Gaussian functional integral arises. In
terms of the Monte Carlo approach, each simulation run corresponds to a path of the Euclidean functional
integral.

The error distribution functions satisfy

/ de; P(i,e;) =1

o0
/ dei P(’I:,Ei)ei =0 5
—0o0
(o]
/ de; P(i,€;)e2 = o2 |
— o0

and it is assumed that there are no correlations between different data points, that is, P(e;, €;) = P(i,€;) P(j, €5l
so that

/ deidejp(ei,ej)eiej =0
—0o0

This is often the case because statistical errors for different data points are independent. It is possible to
modify the formulas for cases for which error-data correlations exist, but this is not done here.

Here is a derivation of the variance coefficients C? for the one parameter case. The fitting function
f(z,a) depends on a single parameter a. Let ag be the best fit for a for perfect data; ag is determined by
minimizing the chi-squared fit*

Naata
X (a)= > (f (i) —ys)*
that is,
OE(a)| _ o, , Of (zi,a,)
5| =0= 22 (wir a0) = i) =5

ao

If f(x,a0) is a perfect fit, then x (ap) = 0 and f (z;,a0) = ¥;-

When errors ¢; are introduced for the ith data point, the measured value y;“? of the ith data point
may deviate from the ideal value of y;. In what follows, we assume multiplicative errors (y;"? = y;(1 + €;)).
The methods works for additive errors or a combination of both additive and multiplicative errors. See the
discussion below.

The fitting of the parameter a using experimental data is determined by requiring that the chi-square

fit
Nyata
x* (a,{g;}) = Z (f (@i,0) — yi (1 + &)
be minimized:
ax* (a,{&;}) e df (z,a)
-4 Wl (zi,as ({&;}) —vi (1 + &) —F——
Oa oy g ! 00 |oma,(fes})

* The least squares sum is employed without summands being divided by o7 because the original supernova
flux data had negligible errors. It is straightforward to obtain formulas for the case when 1/0? factors are
present: One replaces y; = y;/0; and f(z;) = f(x;)/o; in the equations.
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Here, a, is the minimizing solution. As long as the errors €; are small, one may expand about the perfect

data case: 5
Qg
as ({ex}) = ao + Zgi D,

+ ...
{ex=0}

2
) o
{ex=0}

1 8%a,
+ = €i€j
{ex=0} 2 % 66,'86]'

Then it is straightforward to show that the variance in a is

(@)t = 3 o7 [ 2
¢ 66,'

=1

Define 2x?
A= ! Ox 2(61) ’
2 00 |, {er=0}
pi=-1 2200
2  0Oale; a=as,{ex=0}

Then the small ¢; expansion leads to the following formula

1 Naiata
ol = <a2>—(a)2 =5 Z 0B + ...
=1

The quantities A and B; can be evaluated in terms of the fitting function f(z,a) and the data (z;,y;):

Ndata. 2
Of (zi, ao) 0%f (w1, a0)
A= ; l(T + (f (@i, a0) — yi) a2 |
6f (mia ao)
Oa
Usually, the second term in A can be neglected because the fit is good. If this is not the case, one should
probably do a better job of obtaining f(z,a). With a good fit, B may be replaced by

Of (zi,a,)
Oa ’

B =y;

B = f(zi,a,)

and the variance in a is determined completely by the fitting function and the location x; of the data.
Supernova spectral features consist of emission-spectrum peaks and absorption-spectrum troughs. They
are characterized by three parameters: the location of a minimum or maximum, the height of the feature
and the width of the feature.
The analytic method for three parameters (a, b and c) is evaluated using the following formulas. The
variances and cross variances in the parameters are

Niata
2 pP1 PP2
E o;B'B* +...

=1

o2 = —1
pip2 A2

where p; and p, stand for either a, b or ¢, and where

Siz Sgate Stat.
A =det | Sgy. sz? St f. )

St.fa St.p Sp2

af(m‘iaacnboyco) 8f(zi:aoaboaco) 8f(zi:aoaboaco)
ab dc

da
B} = y;det Sty fa Sz St 5. )
S f Stefy g2



Sy State State
Bf = yl det af(wiaagvbmcc) af(wiaammeO) af(miyaaabo’CO)

5] b de ’
S, fa St.fu Sz
Sz Stats St.t.
B¢ = y; det Sty fa Sz Sty f
8f(zi,ao,ba,Co) 8f($i,ao ,bmco) 8f($i,llo ameO)
da b dc

The sums appearing in these equations are

62f (mia Ao, bO: CO)
Op10p2

Ndata,
6f (mi,ao,bo,co) 6f (w’i;aoaboaco)
Stoitrs = D [

apl 8])2 + (f (.’L’i,ao, bOaCO) - yl)

i=i
These results follow from the first order dependencies of the parameters on data errors:

6])1 _ Bfl
i |(ey—0y A

It is obvious from the form of the equations for the three-parameter case as to how to obtain the formulas
for an arbitrary number of parameters. If the errors are additive instead of multiplicative then the factors
of y; in the B; are absent.

Two checks of the equations were performed. For a linear fit f(x,a,b) = a + bz, it is possible to show
that the formalism reduces to results given in Section 14.2 of “Numerical Recipes: The Art of Scientific
Computing” (Cambridge University Press, 1986). For the three parameter case, a Monte Carlo simulation
was performed to numerically verify the equations.
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