CMB Anisotropies: Determining Cosmological Parameters - Large angle measurements probe spectral tilt n-1 through SW effect and curvature through late time SW, but masked by cosmic variance. - Astrophysics, i.e. secondary anisotropies, prominent on small angles. - Cosmology best detected on medium scales through acoustic oscillations left from photon-baryon coupling. #### **Acoustic Oscillations** Baryon perturbations don't grow but oscillate like sound waves. $$\delta_b \propto c_s^{1/4} e^{i \int k c_s \, d\eta}$$ Recall $$c_s \equiv \sqrt{\frac{dp}{d\rho}}$$ $$= \sqrt{\frac{c^2}{3}} \left(1 + \frac{3}{4} \frac{\rho_b}{\rho_\gamma} \right)^{-1/2} = \frac{c}{\sqrt{3}} \left(1 + \frac{3}{4} \frac{1 + z_{b\gamma}}{1 + z} \right)^{-1/2}$$ The change of c_s from its high redshift value of $c/\sqrt{3}$ is sometimes called baryon loading. So the amplitude of the acoustic signal is sensitive to Ω_b and the Hubble constant h. The largest possible wavelength is given by the sound horizon size at decoupling, so the first acoustic peak occurs at $$l = kr_a(z_{dec}) = 2\pi r_a/\lambda$$ $$= \pi \frac{r_a(z_{dec})}{r_h(z_{dec})}$$ where $$r_h(z) = a(t) \int_0^t c_s dt/a = (1+z)^{-1} \int_{1+z}^\infty dy \, \frac{c_s(y)}{H(y)}$$ The acoustic peaks occur in a harmonic series, the possible wavelengths being integer divisions of the maximum, so $$l_{peak m} = m l_{max}$$, $m = 1, 2, 3 \dots$ Since z_{dec} is remarkably insensitive to cosmological parameters, other than the already determined T_{γ} , cosmology enters simply through the ratio of the sound horizon size to the angular distance. The sound horizon r_h depends on: - H(z) at early times influenced by z_{eq} so depends on Ω_r , i.e. number of neutrino species, and Ω_m (including nonbaryonic matter), and h. - $c_s(z)$ depends on baryon-photon ratio η , contribution of helium abundance Y (to relate n_b to Ω_b), and h. The angular distance r_a depends on: • H(z) at later times – influenced by Ω_{tot} , individual components Ω_{σ} , e.g. cosmological constant Λ , and h. At asymptotically high redshift, $$r_a \to 2H_0^{-1}\Omega_m^{-1}z^{-1}$$ $$r_h \to \frac{2}{\sqrt{3}}H_0^{-1}\Omega_m^{-1/2}z^{-3/2}$$ since baryon loading is negligible and $c_s \to 1/\sqrt{3}$. So $$l_{\text{max}} = \Delta l = \pi \sqrt{3} \Omega_m^{-1/2} z^{1/2}$$ $$\rightarrow 180 \Omega_m^{-1/2}$$ using $z_{dec} = 1100$. Thus the peak position and spacing probes the matter density. A cosmological constant has little effect at high redshift so in a flat inflationary universe $(\Omega_m + \Omega_\Lambda = 1)$ r_h is unchanged but $r_a \propto \Omega_m^{-1/2}$ so $\Delta l \propto \Omega_m^0$. #### Golden Rule: The peak position and spacing probes the total density Ω_{tot} . The peak amplitude probes the baryon density Ω_b and h. The insensitivity to components, e.g. Ω_m or Λ , separately is called **degeneracy**. In fact, z_{dec} is not in the asymptotic regime so the degeneracy is somewhat lifted. The Golden Rule is really more a rule of thumb. Accurate observation of many peaks does allow separate determination of cosmological ingredients, may even yield secondary parameters such as N_{ν} . Figures from animations of C_l anisotropy dependence on parameters at http://www.sns.ias.edu/~whu/metaanim.html # Inflationary Parameters Most inflation theories predict n near unity, but with tilt. DeSitter, or exponential, inflation predicts no tilt but passé. Simplest class of realistic inflation is **power law** inflation, where $a \propto t^p$, p > 1. These also predict existence of additional, tensor perturbations or gravitational waves. Key elements are slow roll parameters measuring shape of inflation potential $V(\phi)$ $$\epsilon \equiv \frac{1}{16\pi G} \left(\frac{V'}{V}\right)^2$$ $$\eta \equiv \frac{1}{8\pi G} \left(\frac{V''}{V}\right)$$ where $'=d/d\phi$. Scalar and tensor power $$P_k \equiv |\delta_k^S|^2 \propto k^n$$ $$P_k^T \equiv |\delta_k^T|^2 \propto k^{n_T}$$ with indices $$n = 1 - 6\epsilon + 2\eta$$ $$n_T = -2\epsilon$$ Ratio of tensor to scalar power $$r = rac{T}{S} \equiv rac{C_l^T}{C_l^S} = 12.4\epsilon$$ Consistency condition for slow roll approximation gives $$n = 1 - \frac{1}{6.2} \frac{T}{S} = \frac{p-3}{p-1}$$ where the last equality is for power law inflation. So gravitational waves imply tilt. To detect gravitational wave perturbation to CMB directly, likely to need CMB polarization measurements – next generation. ### Test of entire paradigm for structure formation - Is inflation origin of primordial perturbations? - Are perturbations adiabatic? - Are perturbations Gaussian? - What is form of the potential, i.e. GUT/Planck energy physics? - Is gravitational instability the driving mechanism for structure formation? - What is the dark matter? - What are the values of the cosmological parameters? Greatest leverage in probing universe through combination of CMB results with galaxy power spectrum, supernovae distance-redshift tests. The truth is out there (and not far off) | | 1997 | BOOM/MAX | MAP* | Planck* | |-----------------------------|-------------------------------------|-----------------|-------|------------| | Ω | 0.01 - 2 | 6% | 18% | 1% | | Ω_b | $0.01h^{-2}$ | 30% | 10% | 0.7% | | $\Lambda(\Omega_{\Lambda})$ | < 0.65 | ±0.10 | ±0.43 | ±0.05 | | Ω_{ν} | < 2 | ±0.25 | ±0.08 | ±0.03 | | t_0 | 12-18 Gyr | | | | | H_0 | 30-80 km/s/Mpc | 10% | 20% | 2% | | σ_8 | 0.5-0.6 | 30% | 30% | 10% | | Q | $20 \pm 2 \ \mu \text{K}^{\bullet}$ | " | " | " | | ns | 1.0 ± 0.5 | 30% | 5% | 1% | | T | 0.01 - 1 | ±0.5 | ±0.2 | ±0.15 | | T_0 | $2.73 \pm 0.01^{\circ}$ | 800 <u>1</u> 00 | _ | A COURT OF | | Y | 0.2-0.25 | 10% | 10% | 7% | | T/S | 0.0 - 1 | ±1.6 | ±0.38 | ±0.09 | $From\ Smoot\ astro-ph/9705135$